-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrenderer.py
161 lines (128 loc) · 6.88 KB
/
renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch,os,imageio,sys
from torch import normal
from tqdm.auto import tqdm
from dataLoader.ray_utils import get_rays
from models.phasoMLP import PhasoMLP
from utils import *
from dataLoader.ray_utils import ndc_rays_blender
# @torch.no_grad()
def OctreeRender_trilinear_fast(rays, phasorf, chunk=4096, N_samples=-1, ndc_ray=False, white_bg=True, is_train=False, device='cuda'):
rgbs, alphas, depth_maps, weights, uncertainties = [], [], [], [], []
normal_maps = []
N_rays_all = rays.shape[0]
for chunk_idx in range(N_rays_all // chunk + int(N_rays_all % chunk > 0)):
rays_chunk = rays[chunk_idx * chunk:(chunk_idx + 1) * chunk].to(device)
if is_train:
rgb_map, depth_map = phasorf(rays_chunk, is_train=is_train, white_bg=white_bg, ndc_ray=ndc_ray, N_samples=N_samples, vis_normal=True)
else:
rgb_map, depth_map, normal_map = phasorf(rays_chunk, is_train=is_train, white_bg=white_bg, ndc_ray=ndc_ray, N_samples=N_samples, vis_normal=True)
normal_maps.append(normal_map)
rgbs.append(rgb_map)
depth_maps.append(depth_map)
if is_train:
return torch.cat(rgbs), torch.cat(depth_maps), None, None, None
return torch.cat(rgbs), torch.cat(depth_maps), torch.cat(normal_maps), None, None
@torch.no_grad()
def evaluation(test_dataset, phasorf, args, renderer, savePath=None, N_vis=5, prtx='', N_samples=-1,
white_bg=False, ndc_ray=False, compute_extra_metrics=False, device='cuda'):
PSNRs, rgb_maps, depth_maps, normal_maps = [], [], [], []
ssims,l_alex,l_vgg=[],[],[]
os.makedirs(savePath, exist_ok=True)
os.makedirs(savePath+"/rgbd", exist_ok=True)
os.makedirs(savePath+"/rgbdn", exist_ok=True)
try:
tqdm._instances.clear()
except Exception:
pass
near_far = test_dataset.near_far
img_eval_interval = 1 if N_vis < 0 else max(test_dataset.all_rays.shape[0] // N_vis,1)
idxs = list(range(0, test_dataset.all_rays.shape[0], img_eval_interval))
for idx, samples in tqdm(enumerate(test_dataset.all_rays[0::img_eval_interval]), file=sys.stdout):
W, H = test_dataset.img_wh
rays = samples.view(-1,samples.shape[-1])
rgb_map, depth_map, normal_map, _, _ = renderer(rays, phasorf, chunk=4096, N_samples=N_samples,
ndc_ray=ndc_ray, white_bg = white_bg, device=device)
rgb_map = rgb_map.clamp(0.0, 1.0)
rgb_map, depth_map = rgb_map.reshape(H, W, 3).cpu(), depth_map.reshape(H, W).cpu()
normal_map = normal_map.reshape(H, W, 3).cpu()
depth_map, _ = visualize_depth_numpy(depth_map.numpy(),near_far)
if len(test_dataset.all_rgbs):
gt_rgb = test_dataset.all_rgbs[idxs[idx]].view(H, W, 3)
loss = torch.mean((rgb_map - gt_rgb) ** 2)
PSNRs.append(-10.0 * np.log(loss.item()) / np.log(10.0))
if compute_extra_metrics:
ssim = rgb_ssim(rgb_map, gt_rgb, 1)
l_a = rgb_lpips(gt_rgb.numpy(), rgb_map.numpy(), 'alex', phasorf.device)
l_v = rgb_lpips(gt_rgb.numpy(), rgb_map.numpy(), 'vgg', phasorf.device)
ssims.append(ssim)
l_alex.append(l_a)
l_vgg.append(l_v)
# don't know why using 255 doesn't work on my mac
normal_map = (normal_map.numpy() * 254).astype(np.uint8)
rgb_map = (rgb_map.numpy() * 254).astype(np.uint8)
rgb_maps.append(rgb_map)
depth_maps.append(depth_map)
normal_maps.append(normal_map)
if savePath is not None:
imageio.imwrite(f'{savePath}/{prtx}{idx:03d}.png', rgb_map)
rgb_map = np.concatenate((rgb_map, depth_map), axis=1)
imageio.imwrite(f'{savePath}/rgbd/{prtx}{idx:03d}.png', rgb_map)
rgb_map = np.concatenate((rgb_map, normal_map), axis=1)
imageio.imwrite(f'{savePath}/rgbdn/{prtx}{idx:03d}.png', rgb_map)
imageio.mimwrite(f'{savePath}/{prtx}video.mp4', np.stack(rgb_maps), fps=30, quality=8)
imageio.mimwrite(f'{savePath}/{prtx}depthvideo.mp4', np.stack(depth_maps), fps=30, quality=8)
imageio.mimwrite(f'{savePath}/{prtx}normalvideo.mp4', np.stack(normal_maps), fps=30, quality=8)
if PSNRs:
psnr = np.mean(np.asarray(PSNRs))
if compute_extra_metrics:
ssim = np.mean(np.asarray(ssims))
l_a = np.mean(np.asarray(l_alex))
l_v = np.mean(np.asarray(l_vgg))
np.savetxt(f'{savePath}/{prtx}mean.txt', np.asarray([psnr, ssim, l_a, l_v]))
else:
np.savetxt(f'{savePath}/{prtx}mean.txt', np.asarray([psnr]))
return PSNRs
@torch.no_grad()
def evaluation_path(test_dataset,phasorf, c2ws, renderer, savePath=None, N_vis=5, prtx='', N_samples=-1,
white_bg=False, ndc_ray=False, compute_extra_metrics=True, device='cuda'):
PSNRs, rgb_maps, depth_maps = [], [], []
ssims,l_alex,l_vgg=[],[],[]
os.makedirs(savePath, exist_ok=True)
os.makedirs(savePath+"/rgbd", exist_ok=True)
try:
tqdm._instances.clear()
except Exception:
pass
near_far = test_dataset.near_far
for idx, c2w in tqdm(enumerate(c2ws)):
W, H = test_dataset.img_wh
c2w = torch.FloatTensor(c2w)
rays_o, rays_d = get_rays(test_dataset.directions, c2w) # both (h*w, 3)
if ndc_ray:
rays_o, rays_d = ndc_rays_blender(H, W, test_dataset.focal[0], 1.0, rays_o, rays_d)
rays = torch.cat([rays_o, rays_d], 1) # (h*w, 6)
rgb_map, depth_map, normal_map, _, _ = renderer(rays, phasorf, chunk=8192, N_samples=N_samples,
ndc_ray=ndc_ray, white_bg = white_bg, device=device)
rgb_map = rgb_map.clamp(0.0, 1.0)
rgb_map, depth_map = rgb_map.reshape(H, W, 3).cpu(), depth_map.reshape(H, W).cpu()
depth_map, _ = visualize_depth_numpy(depth_map.numpy(),near_far)
rgb_map = (rgb_map.numpy() * 255).astype(np.uint8)
# rgb_map = np.concatenate((rgb_map, depth_map), axis=1)
rgb_maps.append(rgb_map)
depth_maps.append(depth_map)
if savePath is not None:
imageio.imwrite(f'{savePath}/{prtx}{idx:03d}.png', rgb_map)
rgb_map = np.concatenate((rgb_map, depth_map), axis=1)
imageio.imwrite(f'{savePath}/rgbd/{prtx}{idx:03d}.png', rgb_map)
imageio.mimwrite(f'{savePath}/{prtx}video.mp4', np.stack(rgb_maps), fps=30, quality=8)
imageio.mimwrite(f'{savePath}/{prtx}depthvideo.mp4', np.stack(depth_maps), fps=30, quality=8)
if PSNRs:
psnr = np.mean(np.asarray(PSNRs))
if compute_extra_metrics:
ssim = np.mean(np.asarray(ssims))
l_a = np.mean(np.asarray(l_alex))
l_v = np.mean(np.asarray(l_vgg))
np.savetxt(f'{savePath}/{prtx}mean.txt', np.asarray([psnr, ssim, l_a, l_v]))
else:
np.savetxt(f'{savePath}/{prtx}mean.txt', np.asarray([psnr]))
return PSNRs