Skip to content

Latest commit

 

History

History
404 lines (313 loc) · 14.6 KB

0406.根据身高重建队列.md

File metadata and controls

404 lines (313 loc) · 14.6 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

406.根据身高重建队列

力扣题目链接

假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。

请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。

示例 1:

  • 输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
  • 输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
  • 解释:
    • 编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。
    • 编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。
    • 编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。
    • 编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
    • 编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。
    • 编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
    • 因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。

示例 2:

  • 输入:people = [[6,0],[5,0],[4,0],[3,2],[2,2],[1,4]]
  • 输出:[[4,0],[5,0],[2,2],[3,2],[1,4],[6,0]]

提示:

  • 1 <= people.length <= 2000
  • 0 <= hi <= 10^6
  • 0 <= ki < people.length

题目数据确保队列可以被重建

视频讲解

《代码随想录》算法视频公开课:贪心算法,不要两边一起贪,会顾此失彼 | LeetCode:406.根据身高重建队列,相信结合视频在看本篇题解,更有助于大家对本题的理解

思路

本题有两个维度,h和k,看到这种题目一定要想如何确定一个维度,然后再按照另一个维度重新排列。

其实如果大家认真做了135. 分发糖果,就会发现和此题有点点的像。

135. 分发糖果我就强调过一次,遇到两个维度权衡的时候,一定要先确定一个维度,再确定另一个维度。

如果两个维度一起考虑一定会顾此失彼

对于本题相信大家困惑的点是先确定k还是先确定h呢,也就是究竟先按h排序呢,还是先按照k排序呢?

如果按照k来从小到大排序,排完之后,会发现k的排列并不符合条件,身高也不符合条件,两个维度哪一个都没确定下来。

那么按照身高h来排序呢,身高一定是从大到小排(身高相同的话则k小的站前面),让高个子在前面。

此时我们可以确定一个维度了,就是身高,前面的节点一定都比本节点高!

那么只需要按照k为下标重新插入队列就可以了,为什么呢?

以图中{5,2} 为例:

406.根据身高重建队列

按照身高排序之后,优先按身高高的people的k来插入,后序插入节点也不会影响前面已经插入的节点,最终按照k的规则完成了队列。

所以在按照身高从大到小排序后:

局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性

全局最优:最后都做完插入操作,整个队列满足题目队列属性

局部最优可推出全局最优,找不出反例,那就试试贪心。

一些同学可能也会疑惑,你怎么知道局部最优就可以推出全局最优呢? 有数学证明么?

在贪心系列开篇词关于贪心算法,你该了解这些!中,我已经讲过了这个问题了。

刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心,至于严格的数学证明,就不在讨论范围内了。

如果没有读过关于贪心算法,你该了解这些!的同学建议读一下,相信对贪心就有初步的了解了。

回归本题,整个插入过程如下:

排序完的people: [[7,0], [7,1], [6,1], [5,0], [5,2],[4,4]]

插入的过程:

  • 插入[7,0]:[[7,0]]
  • 插入[7,1]:[[7,0],[7,1]]
  • 插入[6,1]:[[7,0],[6,1],[7,1]]
  • 插入[5,0]:[[5,0],[7,0],[6,1],[7,1]]
  • 插入[5,2]:[[5,0],[7,0],[5,2],[6,1],[7,1]]
  • 插入[4,4]:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]

此时就按照题目的要求完成了重新排列。

C++代码如下:

// 版本一
class Solution {
public:
    static bool cmp(const vector<int>& a, const vector<int>& b) {
        if (a[0] == b[0]) return a[1] < b[1];
        return a[0] > b[0];
    }
    vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
        sort (people.begin(), people.end(), cmp);
        vector<vector<int>> que;
        for (int i = 0; i < people.size(); i++) {
            int position = people[i][1];
            que.insert(que.begin() + position, people[i]);
        }
        return que;
    }
};
  • 时间复杂度:O(nlog n + n^2)
  • 空间复杂度:O(n)

但使用vector是非常费时的,C++中vector(可以理解是一个动态数组,底层是普通数组实现的)如果插入元素大于预先普通数组大小,vector底部会有一个扩容的操作,即申请两倍于原先普通数组的大小,然后把数据拷贝到另一个更大的数组上。

所以使用vector(动态数组)来insert,是费时的,插入再拷贝的话,单纯一个插入的操作就是O(n^2)了,甚至可能拷贝好几次,就不止O(n^2)了。

改成链表之后,C++代码如下:

// 版本二
class Solution {
public:
    // 身高从大到小排(身高相同k小的站前面)
    static bool cmp(const vector<int>& a, const vector<int>& b) {
        if (a[0] == b[0]) return a[1] < b[1];
        return a[0] > b[0];
    }
    vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
        sort (people.begin(), people.end(), cmp);
        list<vector<int>> que; // list底层是链表实现,插入效率比vector高的多
        for (int i = 0; i < people.size(); i++) {
            int position = people[i][1]; // 插入到下标为position的位置
            std::list<vector<int>>::iterator it = que.begin();
            while (position--) { // 寻找在插入位置
                it++;
            }
            que.insert(it, people[i]);
        }
        return vector<vector<int>>(que.begin(), que.end());
    }
};
  • 时间复杂度:O(nlog n + n^2)
  • 空间复杂度:O(n)

大家可以把两个版本的代码提交一下试试,就可以发现其差别了!

关于本题使用数组还是使用链表的性能差异,我在贪心算法:根据身高重建队列(续集)中详细讲解了一波

总结

关于出现两个维度一起考虑的情况,我们已经做过两道题目了,另一道就是135. 分发糖果

其技巧都是确定一边然后贪心另一边,两边一起考虑,就会顾此失彼

这道题目可以说比135. 分发糖果难不少,其贪心的策略也是比较巧妙。

最后我给出了两个版本的代码,可以明显看是使用C++中的list(底层链表实现)比vector(数组)效率高得多。

对使用某一种语言容器的使用,特性的选择都会不同程度上影响效率

所以很多人都说写算法题用什么语言都可以,主要体现在算法思维上,其实我是同意的但也不同意。

对于看别人题解的同学,题解用什么语言其实影响不大,只要题解把所使用语言特性优化的点讲出来,大家都可以看懂,并使用自己语言的时候注意一下。

对于写题解的同学,刷题用什么语言影响就非常大,如果自己语言没有学好而强调算法和编程语言没关系,其实是会误伤别人的。

这也是我为什么统一使用C++写题解的原因

其他语言版本

Java

class Solution {
    public int[][] reconstructQueue(int[][] people) {
        // 身高从大到小排(身高相同k小的站前面)
        Arrays.sort(people, (a, b) -> {
            if (a[0] == b[0]) return a[1] - b[1];
            return b[0] - a[0];
        });

        LinkedList<int[]> que = new LinkedList<>();

        for (int[] p : people) {
            que.add(p[1],p);
        }

        return que.toArray(new int[people.length][]);
    }
}

Python

class Solution:
    def reconstructQueue(self, people: List[List[int]]) -> List[List[int]]:
    	# 先按照h维度的身高顺序从高到低排序。确定第一个维度
        # lambda返回的是一个元组:当-x[0](维度h)相同时,再根据x[1](维度k)从小到大排序
        people.sort(key=lambda x: (-x[0], x[1]))
        que = []
	
	# 根据每个元素的第二个维度k,贪心算法,进行插入
        # people已经排序过了:同一高度时k值小的排前面。
        for p in people:
            que.insert(p[1], p)
        return que

Go

func reconstructQueue(people [][]int) [][]int {
    // 先将身高从大到小排序,确定最大个子的相对位置
    sort.Slice(people, func(i, j int) bool {
        if people[i][0] == people[j][0] {
            return people[i][1] < people[j][1]   // 当身高相同时,将K按照从小到大排序
        }
        return people[i][0] > people[j][0]     // 身高按照由大到小的顺序来排
    })

    // 再按照K进行插入排序,优先插入K小的
	for i, p := range people {
		copy(people[p[1]+1 : i+1], people[p[1] : i+1])  // 空出一个位置
		people[p[1]] = p
	}
	return people
}
// 链表实现
func reconstructQueue(people [][]int) [][]int {
     sort.Slice(people,func (i,j int) bool {
        if people[i][0] == people[j][0] {
            return people[i][1] < people[j][1]    //当身高相同时,将K按照从小到大排序
        }
        return people[i][0] > people[j][0]
    })
    l := list.New()      //创建链表
    for i:=0; i < len(people); i++ {
        position := people[i][1]
        mark := l.PushBack(people[i])      //插入元素
        e := l.Front()
        for position != 0 {      //获取相对位置
            position--
            e = e.Next()
        }
        l.MoveBefore(mark, e)    //移动位置
        
    }
    res := [][]int{}
    for e := l.Front(); e != nil; e = e.Next() {
        res = append(res, e.Value.([]int))
    }
    return res
}

Javascript

var reconstructQueue = function(people) {
    let queue = []
    people.sort((a, b ) => {
        if(b[0] !== a[0]) {
            return b[0] - a[0]
        } else {
            return a[1] - b[1]
        }
        
    })

    for(let i = 0; i < people.length; i++) {
        queue.splice(people[i][1], 0, people[i])
    }
    return queue
};

Rust

impl Solution {
    pub fn reconstruct_queue(people: Vec<Vec<i32>>) -> Vec<Vec<i32>> {
        let mut people = people;
        people.sort_by(|a, b| {
            if a[0] == b[0] { return a[1].cmp(&b[1]); }
            b[0].cmp(&a[0])
        });
        let mut que: Vec<Vec<i32>> = Vec::new();
        que.push(people[0].clone());
        for i in 1..people.len() {
            let position = people[i][1];
            que.insert(position as usize, people[i].clone());
        }
        que
    }
}

C

int cmp(const void *p1, const void *p2) {
    int *pp1 = *(int**)p1;
    int *pp2 = *(int**)p2;
    // 若身高相同,则按照k从小到大排列
    // 若身高不同,按身高从大到小排列
    return pp1[0] == pp2[0] ? pp1[1] - pp2[1] : pp2[0] - pp1[0];
}

// 将start与end中间的元素都后移一位
// start为将要新插入元素的位置
void moveBack(int **people, int peopleSize, int start, int end) {
    int i;
    for(i = end; i > start; i--) {
        people[i] = people[i-1];
    }
}

int** reconstructQueue(int** people, int peopleSize, int* peopleColSize, int* returnSize, int** returnColumnSizes){
    int i;
    // 将people按身高从大到小排列(若身高相同,按k从小到大排列)
    qsort(people, peopleSize, sizeof(int*), cmp);

    for(i = 0; i < peopleSize; ++i) {
        // people[i]要插入的位置
        int position = people[i][1];
        int *temp = people[i];
        // 将position到i中间的元素后移一位
        // 注:因为已经排好序,position不会比i大。(举例:排序后people最后一位元素最小,其可能的k最大值为peopleSize-2,小于此时的i)
        moveBack(people, peopleSize, position, i);
        // 将temp放置到position处
        people[position] = temp;

    }
    

    // 设置返回二维数组的大小以及里面每个一维数组的长度
    *returnSize = peopleSize;
    *returnColumnSizes = (int*)malloc(sizeof(int) * peopleSize);
    for(i = 0; i < peopleSize; ++i) {
        (*returnColumnSizes)[i] = 2;
    }
    return people;
}

TypeScript

function reconstructQueue(people: number[][]): number[][] {
    people.sort((a, b) => {
        if (a[0] === b[0]) return a[1] - b[1];
        return b[0] - a[0];
    });
    const resArr: number[][] = [];
    for (let i = 0, length = people.length; i < length; i++) {
        resArr.splice(people[i][1], 0, people[i]);
    }
    return resArr;
};

Scala

object Solution {
  import scala.collection.mutable
  def reconstructQueue(people: Array[Array[Int]]): Array[Array[Int]] = {
    val person = people.sortWith((a, b) => {
      if (a(0) == b(0)) a(1) < b(1)
      else a(0) > b(0)
    })

    var que = mutable.ArrayBuffer[Array[Int]]()

    for (per <- person) {
      que.insert(per(1), per)
    }

    que.toArray
  }
}