Skip to content

Commit 6231896

Browse files
ATMxsp01ATMxsp01
and
ATMxsp01
authored
Update llama example information (#12640)
Co-authored-by: ATMxsp01 <[email protected]>
1 parent 81211fd commit 6231896

File tree

4 files changed

+9
-15
lines changed

4 files changed

+9
-15
lines changed

python/llm/example/GPU/HuggingFace/LLM/llama3.1/README.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
# Llama3.1
2-
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Llama3.1 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) as a reference Llama3.1 model.
2+
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Llama3.1 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) as a reference Llama3.1 model.
33

44
## 0. Requirements
55
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
@@ -104,12 +104,12 @@ python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROM
104104
```
105105

106106
Arguments info:
107-
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama3.1 model (e.g. `meta-llama/Meta-Llama-3.1-8B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Meta-Llama-3.1-8B-Instruct'`.
107+
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama3.1 model (e.g. `meta-llama/Llama-3.1-8B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-3.1-8B-Instruct'`.
108108
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
109109
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
110110

111111
#### Sample Output
112-
#### [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)
112+
#### [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct)
113113
```log
114114
Inference time: xxxx s
115115
-------------------- Prompt --------------------

python/llm/example/GPU/HuggingFace/LLM/llama3.1/generate.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -42,8 +42,8 @@ def get_prompt(user_input: str, chat_history: list[tuple[str, str]],
4242

4343
if __name__ == '__main__':
4444
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama3.1 model')
45-
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Meta-Llama-3.1-8B-Instruct",
46-
help='The huggingface repo id for the Llama3 (e.g. `meta-llama/Meta-Llama-3.1-8B-Instruct`) to be downloaded'
45+
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-3.1-8B-Instruct",
46+
help='The huggingface repo id for the Llama3 (e.g. `meta-llama/Llama-3.1-8B-Instruct`) to be downloaded'
4747
', or the path to the huggingface checkpoint folder')
4848
parser.add_argument('--prompt', type=str, default="What is AI?",
4949
help='Prompt to infer')

python/llm/example/GPU/HuggingFace/LLM/llama3.2/README.md

+4-4
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
# Llama3.2
2-
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Llama3.2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [meta-llama/Meta-Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.2-3B-Instruct) and [meta-llama/Meta-Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.2-1B-Instruct) as reference Llama3.2 models.
2+
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Llama3.2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) and [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) as reference Llama3.2 models.
33

44
## 0. Requirements
55
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
@@ -104,12 +104,12 @@ python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROM
104104
```
105105

106106
Arguments info:
107-
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama3.2 model (e.g. `meta-llama/Meta-Llama-3.2-3B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Meta-Llama-3.2-3B-Instruct'`.
107+
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama3.2 model (e.g. `meta-llama/Llama-3.2-3B-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-3.2-3B-Instruct'`.
108108
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
109109
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
110110

111111
#### Sample Output
112-
#### [meta-llama/Meta-Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.2-3B-Instruct)
112+
#### [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
113113
```log
114114
Inference time: xxxx s
115115
-------------------- Prompt --------------------
@@ -126,7 +126,7 @@ What is AI?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
126126
Artificial Intelligence (AI) refers to the development of computer systems that can perform tasks that would typically require human intelligence, such as learning, problem-solving, and
127127
```
128128

129-
#### [meta-llama/Meta-Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.2-1B-Instruct)
129+
#### [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct)
130130
```log
131131
Inference time: xxxx s
132132
-------------------- Prompt --------------------

python/llm/example/GPU/HuggingFace/LLM/llama3/README.md

-6
Original file line numberDiff line numberDiff line change
@@ -14,9 +14,6 @@ conda create -n llm python=3.11
1414
conda activate llm
1515
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
1616
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
17-
18-
# transformers>=4.33.0 is required for Llama3 with IPEX-LLM optimizations
19-
pip install transformers==4.37.0
2017
```
2118

2219
#### 1.2 Installation on Windows
@@ -27,9 +24,6 @@ conda activate llm
2724

2825
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
2926
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
30-
31-
# transformers>=4.33.0 is required for Llama3 with IPEX-LLM optimizations
32-
pip install transformers==4.37.0
3327
```
3428

3529
### 2. Configures OneAPI environment variables for Linux

0 commit comments

Comments
 (0)