-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKNN.m
46 lines (43 loc) · 1.59 KB
/
KNN.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
function [AccuracyK, dist, results2,results_f] = KNN(K,numWriters,alpha1,alpha2,end_training_document,start_training_document,end_testing_document,start_testing_document)
%% Measuring distance between each test document with every training Document
dist = zeros(size(alpha1,2), size(alpha2,2));
for i = 1:size(alpha2,2)
for j = 1:size(alpha1,2)
dist(j,i) = norm(alpha2(:,i) - alpha1(:,j),2);
end
end
%% Assigning class each training document based on K nearest neighbour
results2=zeros(K,size(alpha2,2));
results3=zeros(K,size(alpha2,2));
results_f=zeros(1,size(alpha2,2));
results=zeros(size(alpha1,2),size(alpha2,2));
for i = 1:size(alpha2,2)
[~,results(:,i)] = sort(dist(:,i));
end
for k = 1:size(results2,2)
results3(:,k)=results(1:K,k)-(end_training_document - start_training_document +1)*(k-1);
end
results2(:,:)=ceil(results(1:K,:)/(end_training_document - start_training_document +1));
for i = 1 : size(alpha2,2)
stats=tabulate(results2(:,i));
temp2=sortrows(stats,-2);
% find the first element in results2(:,i) that has the frequency temp(1,2)
% frequency of jth element in results2(:,i) is stats(results2(j,i),2)
for j = 1: size(results2(:,i),1)
if(stats(results2(j,i),2)==temp2(1,2))
results_f(i)=results2(j,i);
break;
end
end
%results_f(i)=temp2(1,1);
clear temp2;
end
countx=0;
for i = 1 : size(results_f,2)
%if results_f(i)==i
if results_f(i)== ceil(i/(end_testing_document - start_testing_document +1))
countx = countx + 1;
end
end
AccuracyK = (countx*100)/(numWriters)/(end_testing_document-start_testing_document+1);
end