-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprofile_melissa_zip_code.py
546 lines (461 loc) · 15.2 KB
/
profile_melissa_zip_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import pandas as pd
from time import clock
from cProfile import Profile
from pstats import Stats
from memory_profiler import LineProfiler
from memory_profiler import show_results
from argparse import ArgumentParser
p = ArgumentParser()
p.add_argument('importer',
choices=[
'pandas',
'pandas-stream',
'gocept',
'gocept-stream',
'fixedwidth',
'fixed',
'djcopy',
'ascii'
],
help='Which library to profile.')
p.add_argument('top_n',
metavar='N',
type=int,
nargs='?',
help='How many top lines from profiler output to display.')
p.add_argument('--memory',
action='store_true',
default=False,
help='Whether to run the memory profiler (huge overhead).')
p.add_argument('--profile',
action='store_true',
default=False,
help='Whether to use cProfile.Profile for detailed stats ' +
'(adds overhead).')
parsed_args = p.parse_args()
def main():
"""
Init the profilers and run the tests.
"""
global parsed_args
tpl = choose_func_to_run()
pr = enable_time_profiler()
mem = enable_mem_profiler(tpl[0])
tm = enable_simple_profiler()
fun = tpl[0]
if len(tpl) > 1:
fun(*tpl[1:])
else:
fun()
show_time_profiler_results(pr, parsed_args.top_n)
show_mem_profiler_results(mem)
show_simple_timer_results(tm)
def choose_func_to_run():
"""
Select a function to test according to provided arguments.
:return: function
"""
global PARSERS
return PARSERS[parsed_args.importer]
def enable_mem_profiler(fun):
"""
Enable memory profiler if specified in arguments.
:param fun: function to wrap
:return: LineProfiler instance
"""
global parsed_args
mem = None
if parsed_args.memory:
mem = LineProfiler()
mem.add_function(fun)
mem.enable()
return mem
def enable_time_profiler():
"""
Enable time profiler.
:return: cProfile.Profile
"""
global parsed_args
pr = None
if parsed_args.profile:
pr = Profile()
pr.enable()
return pr
def enable_simple_profiler():
"""
Get start time of script.
:return:
"""
return clock()
def show_simple_timer_results(start_time):
"""
Show simple time elapsed.
"""
end_time = clock()
difference = end_time - start_time
print 'Elapsed:', difference
def show_time_profiler_results(pr, top_records):
"""
Show results of timed profiling.
:param pr: profiler instance
:param top_records: how many top function calls to show.
"""
if pr:
st = Stats(pr)
st.strip_dirs()
st.sort_stats('cumulative')
st.print_stats(top_records)
def show_mem_profiler_results(mem):
"""
Show results of memory profiling if enabled.
:param mem: profiler instance
"""
if mem:
show_results(mem)
mem.disable()
def run_ascii():
"""
Load records with asciitable.
* PyPy: OK. Development stopped (was moved into the Astropy project
as astropy.io.ascii).
* Source: https://github.com/taldcroft/asciitable
* Docs: Decent
* Independent: NumPy not required but recommended.
* Small: no
* Can specify column data types: yes. If trying to guess, will parse zips
as numbers.
* Can read in chunks: no
* Can skip columns: yes
* Can stream: no
* Return type: wrapper around file or iterable, each row is a tuple
* Memory usage: ~ 60 Mb
* Timing: around 0.7 sec
"""
import asciitable
import numpy
reader = asciitable.get_reader(
Reader=asciitable.FixedWidth,
header_start=None,
data_start=2,
col_starts=(0, 5, 7, 35, 36, 41, 48, 56, 59, 65, 66, 67, 71, 75, 78),
col_ends=(4, 6, 34, 35, 40, 47, 55, 58, 64, 65, 66, 70, 74, 77, 80),
names=(
'zip_code', 'state_code', 'city_name', 'zip_type',
'county_code', 'latitude', 'longitude', 'area_code',
'finance_code', 'city_official', 'facility', 'msa_code',
'pmsa_code', 'filler'
),
converters={
'zip_code': [asciitable.convert_numpy(numpy.str)]
},
include_names=(
'zip_code', 'state_code', 'city_name', 'county_code', 'latitude',
'longitude', 'area_code', 'msa_code', 'pmsa_code'
),
)
data = reader.read(
'data/ZIP.DAT'
)
records = 0
for row in data:
records += 1
print 'Records:', records
def run_fixed():
"""
Load records with fixed.
* PyPy: NO. Use easy_install fixed.
* Source: https://github.com/cjw296/fixed
* Docs: SUCK. Zero in-code docs, and docs URL does not exist.
* Independent: yes
* Small: yes
* Can specify column data types: yes
* Can read in chunks: yes
* Can skip columns: yes
* Can stream: manually
* Return type: wrapper around file
* Memory usage: very small (below 1 Mb)
* Timing: around 0.4 seconds
"""
from fixed import Parser, Record, Field, Discriminator, Skip
class ZipCodeParser(Parser):
class ZipCodeRecord(Record):
type = Discriminator('')
zip_code = Field(5)
state_code = Field(2)
city_name = Field(28)
zip_type = Field(1)
county_code = Field(5)
latitude = Field(7, convertor=float)
longitude = Field(8, convertor=float)
area_code = Field(3)
finance_code = Skip(6)
city_official = Field(1)
facility = Skip(1)
msa_code = Field(4)
pmsa_code = Field(4)
filler = Skip(3)
records = 0
with open('data/ZIP.DAT', 'r') as f:
p = ZipCodeParser(f)
for rec in p:
#if isinstance(rec, p.ZipCodeRecord.type):
# print rec.zip_code, rec.state_code, rec.city_name, \
# rec.county_code, rec.area_code, rec.msa_code, \
# rec.pmsa_code
records += 1
print 'Records:', records
def run_djcopybook():
"""
Load records with django-copybook.
* PyPy: OK
* Source: https://github.com/imtapps/django-copybook
* Docs: usable
* Independent: not really, also installs django
* Small: yes
* Can specify column data types: yes
* Can read in chunks: manually
* Can skip columns: no
* Can stream: manually
* Return type: every line is a custom class inherited from Record
* Memory usage: very small (< 1 Mb)
* Timing: around 31 sec. WTH is it doing?
"""
from djcopybook.fixedwidth import Record
from djcopybook.fixedwidth import fields
class ZipCodeRecord(Record):
zip_code = fields.StringField(5)
state_code = fields.StringField(2)
city_name = fields.StringField(28)
zip_type = fields.StringField(1)
county_code = fields.StringField(5)
latitude = fields.DecimalField(7, decimals=4)
longitude = fields.DecimalField(8, decimals=4)
area_code = fields.StringField(3)
finance_code = fields.StringField(6)
city_official = fields.StringField(1)
facility = fields.StringField(1)
msa_code = fields.StringField(4)
pmsa_code = fields.StringField(4)
filler = fields.StringField(3)
eol = fields.StringField(2)
records = 0
with open('data/ZIP.DAT', 'r') as f:
for line in f:
zp = ZipCodeRecord.from_record(line)
records += 1
print 'Records:', records
def run_fixedwidth():
"""
Load records with fixedwidth.FixedWidth.
* PyPy: OK
* Source: https://github.com/ShawnMilo/fixedwidth
* Docs: usable
* Independent: yes
* Small: yes
* Can specify column data types: yes
* Can read in chunks: manually
* Can skip columns: no
* Can stream: manually
* Return type: parses every line as dict
* Memory usage: minimal
* Timing: around 1.9 sec
"""
from fixedwidth.fixedwidth import FixedWidth
fields = {
'zip_code': {
'required': True, 'type': 'string', 'length': 5,
'padding': ' ', 'alignment': 'left', 'start_pos': 1
},
'state_code': {
'required': True, 'type': 'string', 'length': 2,
'padding': ' ', 'alignment': 'left', 'start_pos': 6
},
'city_name': {
'required': True, 'type': 'string', 'length': 28,
'padding': ' ', 'alignment': 'left', 'start_pos': 8
},
'zip_type': {
'required': True, 'type': 'string', 'length': 1,
'padding': ' ', 'alignment': 'left', 'start_pos': 36
},
'county_code': {
'required': True, 'type': 'string', 'length': 5,
'padding': ' ', 'alignment': 'left', 'start_pos': 37
},
'latitude': {
'required': False, 'type': 'decimal', 'length': 7,
'padding': ' ', 'alignment': 'left', 'start_pos': 42
},
'longitude': {
'required': False, 'type': 'decimal', 'length': 8,
'padding': ' ', 'alignment': 'left', 'start_pos': 49
},
'area_code': {
'required': True, 'type': 'string', 'length': 3,
'padding': ' ', 'alignment': 'left', 'start_pos': 57
},
'finance_code': {
'required': True, 'type': 'string', 'length': 6,
'padding': ' ', 'alignment': 'left', 'start_pos': 60
},
'city_official': {
'required': False, 'type': 'string', 'length': 1,
'padding': ' ', 'alignment': 'left', 'start_pos': 66
},
'facility': {
'required': False, 'type': 'string', 'length': 1,
'padding': ' ', 'alignment': 'left', 'start_pos': 67
},
'msa_code': {
'required': True, 'type': 'string', 'length': 4,
'padding': ' ', 'alignment': 'left', 'start_pos': 68
},
'pmsa_code': {
'required': False, 'type': 'string', 'length': 4,
'padding': ' ', 'alignment': 'left', 'start_pos': 72
},
'filler': {
'required': False, 'type': 'string', 'length': 3,
'padding': ' ', 'alignment': 'left', 'start_pos': 76
}
}
zp = FixedWidth(config=fields)
records = 0
with open('data/ZIP.DAT', 'r') as f:
for line in f:
zp.line = line
records += 1
print 'Records:', records
def run_gocept(is_stream=False):
"""
Load records with gocept.recordserialize.
* PyPy: OK
* Source: https://bitbucket.org/gocept/gocept.recordserialize/
* Docs: decent
* Independent: yes
* Small: yes
* Can specify column data types: no
* Can read in chunks: no
* Can skip columns: no
* Can stream: manually
* Return type: array of records / or read each record separately
* Memory usage: barely any if reading line-by-line / about 170Mb otherwise
(stores the whole list in memory)
* Timing: around 1.9 sec if reading line-by-line, 1.5 sec otherwise
"""
from gocept.recordserialize import FixedWidthRecord
class ZipCodeRecord(FixedWidthRecord):
"""
Stores specifications of the fixed width ZIP code file to read.
"""
encoding = 'utf-8'
lineterminator = '\r\n'
fields = [
('zip_code', 5, ' ', FixedWidthRecord.LEFT),
('state_code', 2, ' ', FixedWidthRecord.LEFT),
('city_name', 28, ' ', FixedWidthRecord.LEFT),
('zip_type', 1, ' ', FixedWidthRecord.LEFT),
('county_code', 5, ' ', FixedWidthRecord.LEFT),
('latitude', 7, ' ', FixedWidthRecord.LEFT),
('longitude', 8, ' ', FixedWidthRecord.LEFT),
('area_code', 3, ' ', FixedWidthRecord.LEFT),
('finance_code', 6, ' ', FixedWidthRecord.LEFT),
('city_official', 1, ' ', FixedWidthRecord.LEFT),
('facility', 1, ' ', FixedWidthRecord.LEFT),
('msa_code', 4, ' ', FixedWidthRecord.LEFT),
('pmsa_code', 4, ' ', FixedWidthRecord.LEFT),
('filler', 3, ' ', FixedWidthRecord.LEFT),
]
zr = ZipCodeRecord()
records = 0
if is_stream:
with open('data/ZIP.DAT', 'r') as f:
for line in f:
rec = zr.parse(line)
records += 1
else:
with open('data/ZIP.DAT', 'r') as f:
records = len(zr.parse_file(f))
print 'Records:', records
def run_pandas():
"""
Load records into pandas data frame.
* PyPy: OK
* Source: https://github.com/pydata/pandas
* Docs: amazing
* Independent: no
* Small: no
* Can specify column data types: yes
* Can read in chunks: yes
* Can skip columns: yes
* Can stream: yes but it won't be a DataFrame
* Return type: DataFrame
* Memory usage: about 60Mb
* Timing: around 0.5 sec
"""
zp = pd.read_fwf(
'data/ZIP.DAT',
widths=[5, 2, 28, 1, 5, 7, 8, 3, 6, 1, 1, 4, 4, 3],
names=['zip_code', 'state_code', 'city_name', 'type', 'county_fips',
'lat', 'lon', 'area_code', 'fin_code', 'last_line',
'facility', 'msa_code', 'pmsa_code', 'filler'],
usecols=[0, 1, 2, 4, 5, 6, 7, 11, 12],
converters={'zip_code': str, 'county_fips': str, 'area_code': str,
'msa_code': str, 'pmsa_code': str},
header=None,
skiprows=2
)
print 'Records:', len(zp)
def run_pandas_stream():
"""
Load records with pandas streaming interface.
* PyPy: OK
* Source: https://github.com/pydata/pandas
* Docs: amazing
* Independent: no
* Small: no
* Can specify column data types: yes
* Can read in chunks: yes
* Can skip columns: yes
* Can stream: yes
* Return type: TextFileReader (iterable)
* Memory usage: minimal (~1 Mb)
* Timing: depends on chunk size.
10000: 0.48 sec
5000: 0.47 sec
1000: 0.5 sec
500: 0.56 sec
100: 6 sec
1: 55 sec
Because every chunk is a DataFrame, creating one for each record
is a big overhead.
"""
reader = pd.read_fwf(
'data/ZIP.DAT',
widths=[5, 2, 28, 1, 5, 7, 8, 3, 6, 1, 1, 4, 4, 3],
names=['zip_code', 'state_code', 'city_name', 'type', 'county_fips',
'lat', 'lon', 'area_code', 'fin_code', 'last_line',
'facility', 'msa_code', 'pmsa_code', 'filler'],
usecols=[0, 1, 2, 4, 5, 6, 7, 11, 12],
converters={'zip_code': str, 'county_fips': str, 'area_code': str,
'msa_code': str, 'pmsa_code': str},
header=None,
skiprows=2,
chunksize=1000
)
chunks = 0
for chunk in reader:
chunks += 1
print 'Chunks:', chunks
PARSERS = {
'gocept': (run_gocept, False),
'gocept-stream': (run_gocept, True),
'pandas': (run_pandas, ),
'pandas-stream': (run_pandas_stream, ),
'fixedwidth': (run_fixedwidth, ),
'fixed': (run_fixed, ),
'djcopy': (run_djcopybook, ),
'ascii': (run_ascii, )
}
if __name__ == '__main__':
main()