forked from quantumlib/Cirq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdirect_fidelity_estimation.py
342 lines (273 loc) · 12.8 KB
/
direct_fidelity_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
"""Implements direct fidelity estimation.
Fidelity between the desired pure state rho and the actual state sigma is
defined as:
F(rho, sigma) = Tr (rho sigma)
It is a unit-less measurement between 0.0 and 1.0. The following two papers
independently described a faster way to estimate its value:
Direct Fidelity Estimation from Few Pauli Measurements
https://arxiv.org/abs/1104.4695
Practical characterization of quantum devices without tomography
https://arxiv.org/abs/1104.3835
This code implements the algorithm proposed for an example circuit (defined in
the function build_circuit()) and a noise (defines in the variable noise).
"""
import argparse
import asyncio
import itertools
from typing import cast
from typing import List
from typing import Optional
from typing import Tuple
import sys
import numpy as np
import cirq
def build_circuit() -> Tuple[cirq.Circuit, List[cirq.Qid]]:
# Builds an arbitrary circuit to test. Do not include a measurement gate.
# The circuit need not be Clifford, but if it is, simulations will be
# faster.
qubits: List[cirq.Qid] = cast(List[cirq.Qid], cirq.LineQubit.range(3))
circuit: cirq.Circuit = cirq.Circuit(cirq.CNOT(qubits[0], qubits[2]),
cirq.Z(qubits[0]), cirq.H(qubits[2]),
cirq.CNOT(qubits[2], qubits[1]),
cirq.X(qubits[0]), cirq.X(qubits[1]),
cirq.CNOT(qubits[0], qubits[2]))
print('Circuit used:')
print(circuit)
return circuit, qubits
def compute_characteristic_function(circuit: cirq.Circuit,
pauli_string: cirq.PauliString,
qubits: List[cirq.Qid],
density_matrix: np.ndarray):
n_qubits = len(qubits)
d = 2**n_qubits
qubit_map = dict(zip(qubits, range(n_qubits)))
# rho_i or sigma_i in https://arxiv.org/abs/1104.3835
trace = pauli_string.expectation_from_density_matrix(
density_matrix, qubit_map)
assert np.isclose(trace.imag, 0.0, atol=1e-6)
trace = trace.real
prob = trace * trace / d # Pr(i) in https://arxiv.org/abs/1104.3835
return trace, prob
async def estimate_characteristic_function(
circuit: cirq.Circuit, pauli_string: cirq.PauliString,
qubits: List[cirq.Qid], simulator: cirq.DensityMatrixSimulator,
samples_per_term: int):
"""
Estimates the characteristic function using a (noisy) circuit simulator by
sampling the results.
Args:
circuit: The circuit to run the simulation on.
pauli_string: The Pauli string.
qubits: The list of qubits.
simulator: The (noisy) simulator.
samples_per_term: An integer greater than 0, the number of samples.
Returns:
The estimated characteristic function.
"""
p = cirq.PauliSumCollector(circuit=circuit,
observable=pauli_string,
samples_per_term=samples_per_term)
await p.collect_async(sampler=simulator)
sigma_i = p.estimated_energy()
assert np.isclose(sigma_i.imag, 0.0, atol=1e-6)
sigma_i = sigma_i.real
return sigma_i
def _estimate_pauli_traces_clifford(n_qubits: int,
clifford_state: cirq.CliffordState,
n_clifford_trials: int):
"""
Estimates the Pauli traces in case the circuit is Clifford. When we have a
Clifford circuit, there are 2**n Pauli traces that have probability 1/2**n
and all the other traces have probability 0. In addition, there is a fast
way to compute find out what the traces are. See the documentation of
cirq.CliffordState for more detail. This function uses the speedup to sample
the Pauli states with non-zero probability.
Args:
n_qubits: An integer that is the number of qubits.
clifford_state: The basis of the Pauli states with non-zero probability.
n_clifford_trials: An integer that is the number of Pauli states to
sample.
Returns:
A list of Pauli states (represented as tuples of Pauli string, rho_i,
and probability.
"""
# When the circuit consists of Clifford gates only, we can sample the
# Pauli states more efficiently as described on page 4 of:
# https://arxiv.org/abs/1104.4695
d = 2**n_qubits
# The stabilizers_basis variable only contains basis vectors. For
# example, if we have n=3 qubits, then we should have 2**n=8 Pauli
# states that we can sample, but the basis will still have 3 entries. We
# must flip a coin for each, whether or not to include them.
stabilizer_basis = clifford_state.stabilizers()
pauli_traces = []
for _ in range(n_clifford_trials):
# Build the Pauli string as a random sample of the basis elements.
dense_pauli_string = cirq.DensePauliString.eye(n_qubits)
for stabilizer in stabilizer_basis:
if np.random.randint(2) == 1:
dense_pauli_string *= stabilizer
# The code below is equivalent to calling
# clifford_state.wave_function() and then calling
# compute_characteristic_function() on the results (albeit with a
# wave function instead of a density matrix). It is, however,
# unncessary to do so. Instead we directly obtain the scalar rho_i.
rho_i = dense_pauli_string.coefficient
assert np.isclose(rho_i.imag, 0.0, atol=1e-6)
rho_i = rho_i.real
dense_pauli_string *= rho_i
assert np.isclose(abs(rho_i), 1.0, atol=1e-6)
Pr_i = 1.0 / d
pauli_traces.append({
'P_i': dense_pauli_string.sparse(),
'rho_i': rho_i,
'Pr_i': Pr_i
})
return pauli_traces
def _estimate_pauli_traces_general(qubits: List[cirq.Qid],
circuit: cirq.Circuit):
"""
Estimates the Pauli traces in case the circuit is not Clifford. In this case
we cannot use the speedup implemented in the function
_estimate_pauli_traces_clifford() above, and so do a slow, density matrix
simulation.
Args:
qubits: The list of qubits.
circuit: The (non Clifford) circuit.
Returns:
A list of Pauli states (represented as tuples of Pauli string, rho_i,
and probability.
"""
n_qubits = len(qubits)
dense_simulator = cirq.DensityMatrixSimulator()
# rho in https://arxiv.org/abs/1104.3835
clean_density_matrix = cast(
cirq.DensityMatrixTrialResult,
dense_simulator.simulate(circuit)).final_density_matrix
pauli_traces = []
for P_i in itertools.product([cirq.I, cirq.X, cirq.Y, cirq.Z],
repeat=n_qubits):
pauli_string = cirq.PauliString(dict(zip(qubits, P_i)))
rho_i, Pr_i = compute_characteristic_function(circuit, pauli_string,
qubits,
clean_density_matrix)
pauli_traces.append({'P_i': pauli_string, 'rho_i': rho_i, 'Pr_i': Pr_i})
return pauli_traces
def direct_fidelity_estimation(circuit: cirq.Circuit, qubits: List[cirq.Qid],
noise: cirq.NoiseModel, n_trials: int,
n_clifford_trials: int, samples_per_term: int):
"""
Implementation of direct fidelity estimation, as per 'Direct Fidelity
Estimation from Few Pauli Measurements' https://arxiv.org/abs/1104.4695 and
'Practical characterization of quantum devices without tomography'
https://arxiv.org/abs/1104.3835.
Args:
circuit: The circuit to run the simulation on.
qubits: The list of qubits.
noise: The noise model when doing a simulation.
n_trial: The total number of Pauli measurements.
n_clifford_trials: In case the circuit is Clifford, we specify the
number of trials to estimate the noise-free pauli traces.
samples_per_term: is set to 0, we use the 'noise' parameter above and
simulate noise in the circuit. If greater than 0, we ignore the
'noise' parameter above and instead run an estimation of the
characteristic function.
Returns:
The estimated fidelity.
"""
# n_trials is upper-case N in https://arxiv.org/abs/1104.3835
# Number of qubits, lower-case n in https://arxiv.org/abs/1104.3835
n_qubits = len(qubits)
d = 2**n_qubits
clifford_circuit = True
clifford_state: Optional[cirq.CliffordState] = None
try:
clifford_state = cirq.CliffordState(
qubit_map={qubits[i]: i for i in range(len(qubits))})
for gate in circuit.all_operations():
clifford_state.apply_unitary(gate)
except ValueError:
clifford_circuit = False
# Computes for every \hat{P_i} of https://arxiv.org/abs/1104.3835
# estimate rho_i and Pr(i). We then collect tuples (rho_i, Pr(i), \hat{Pi})
# inside the variable 'pauli_traces'.
if clifford_circuit:
print('Circuit is Clifford')
assert clifford_state is not None
pauli_traces = _estimate_pauli_traces_clifford(
n_qubits, cast(cirq.CliffordState, clifford_state),
n_clifford_trials)
else:
print('Circuit is not Clifford')
pauli_traces = _estimate_pauli_traces_general(qubits, circuit)
p = np.asarray([x['Pr_i'] for x in pauli_traces])
if not clifford_circuit:
# For Clifford circuits, we do a Monte Carlo simulations, and thus there
# is no guarantee that it adds up to 1.0 (but it should to the limit).
assert np.isclose(np.sum(p), 1.0, atol=1e-6)
# The package np.random.choice() is quite sensitive to probabilities not
# summing up to 1.0. Even an absolute difference below 1e-6 (as checked just
# above) does bother it, so we re-normalize the probs.
p /= np.sum(p)
noisy_simulator = cirq.DensityMatrixSimulator(noise=noise)
fidelity = 0.0
if samples_per_term == 0:
# sigma in https://arxiv.org/abs/1104.3835
noisy_density_matrix = cast(
cirq.DensityMatrixTrialResult,
noisy_simulator.simulate(circuit)).final_density_matrix
for _ in range(n_trials):
# Randomly sample as per probability.
i = np.random.choice(len(pauli_traces), p=p)
Pr_i = pauli_traces[i]['Pr_i']
measure_pauli_string: cirq.PauliString = pauli_traces[i]['P_i']
rho_i = pauli_traces[i]['rho_i']
if samples_per_term > 0:
sigma_i = asyncio.get_event_loop().run_until_complete(
estimate_characteristic_function(circuit, measure_pauli_string,
qubits, noisy_simulator,
samples_per_term))
else:
sigma_i, _ = compute_characteristic_function(
circuit, measure_pauli_string, qubits, noisy_density_matrix)
fidelity += Pr_i * sigma_i / rho_i
return fidelity / n_trials * d
def parse_arguments(args):
"""Helper function that parses the given arguments."""
parser = argparse.ArgumentParser('Direct fidelity estimation.')
parser.add_argument('--n_trials',
default=10,
type=int,
help='Number of trials to run.')
# TODO(#2802): Offer some guidance on how to set this flag. Maybe have an
# option to do an exhaustive sample and do numerical studies to know which
# choice is the best.
parser.add_argument('--n_clifford_trials',
default=3,
type=int,
help='Number of trials for Clifford circuits. This is '
'in effect when the circuit is Clifford. In this '
'case, we randomly sample the Pauli traces with '
'non-zero probabilities. The higher the number, '
'the more accurate the overall fidelity '
'estimation, at the cost of extra computing and '
'measurements.')
parser.add_argument('--samples_per_term',
default=0,
type=int,
help='Number of samples per trial or 0 if no sampling.')
return vars(parser.parse_args(args))
def main(*, n_trials: int, n_clifford_trials: int, samples_per_term: int):
circuit, qubits = build_circuit()
noise = cirq.ConstantQubitNoiseModel(cirq.depolarize(0.1))
print('Noise model: %s' % (noise))
estimated_fidelity = direct_fidelity_estimation(
circuit,
qubits,
noise,
n_trials=n_trials,
n_clifford_trials=n_clifford_trials,
samples_per_term=samples_per_term)
print('Estimated fidelity: %f' % (estimated_fidelity))
if __name__ == '__main__':
main(**parse_arguments(sys.argv[1:]))