-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfraction.py
273 lines (222 loc) · 6.42 KB
/
fraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env python3
#
# https://docs.python.org/3/reference/datamodel.html#special-method-names
from functools import total_ordering, wraps
def with_fractions(*dec_args, **dec_kwargs):
"""Parse args into Fraction objects."""
def outer(func):
@wraps(func)
def decorate(*args, **kwargs):
try:
args = [Fraction.parse(x) for x in args]
kwargs = {k:Fraction.parse(v) for (k,v) in kwargs.items()}
except TypeError:
return NotImplemented
if dec_kwargs.get('int_only'):
for x in args + list(kwargs.values()):
if x.d != 1:
raise ValueError(
'cannot call {} with non-int Fractions'.format(func.__name__)
)
return func(*args, **kwargs)
return decorate
# first case is @with_fractions, second is @with_fractions(int_only=True)
if len(dec_args) == 1 and len(dec_kwargs) == 0:
return outer(dec_args[0])
else:
return outer
@total_ordering
class Fraction:
"""Do math with integer fractions, avoiding floating point."""
##### Static methods
@staticmethod
def parse(x):
if isinstance(x, Fraction):
return x
elif isinstance(x, int):
return Fraction(x, 1)
elif isinstance(x, float):
return Fraction(*x.as_integer_ratio())
elif isinstance(x, tuple) and 0 < len(x) < 3:
return Fraction(*x)
elif isinstance(x, str):
radix = x.find('.')
x = x.replace('.', '')
if radix == -1:
radix = len(x)
return Fraction(int(x), 10**(len(x)-radix))
else:
raise TypeError
@staticmethod
def gcd(a, b):
while b:
(a, b) = (b, a%b)
return abs(a)
@staticmethod
def lcm(a, b):
return abs(a*b // Fraction.gcd(a, b))
@staticmethod
def simplify(n, d):
neg = (-1 if n * d < 0 else 1)
(n, d) = map(abs, (n, d))
g = Fraction.gcd(n, d)
return (neg * n//g, d//g)
##### Normal methods
def __init__(self, n, d=1):
if d == 0:
raise ZeroDivisionError
if not isinstance(n, int):
n = Fraction.parse(n)
if not isinstance(d, int):
d = Fraction.parse(d)
if any(isinstance(x, Fraction) for x in (n, d)):
f = n / d
(n, d) = (f.n, f.d)
else:
(n, d) = Fraction.simplify(n, d)
(self.n, self.d) = (n, d)
def __repr__(self):
return '<Fraction {}>'.format(str(self))
def __str__(self):
if self.d == 1:
return str(self.n)
return '{}/{}'.format(self.n, self.d)
# https://docs.python.org/3/library/string.html#format-specification-mini-language
def __format__(self, spec):
if any(spec.endswith(x) for x in 'bcdoxXn'):
if self.d != 1:
raise ValueError(
'Unkown format code "{}" for non-int Fraction'.format(spec)
)
return int(self).__format__(spec)
if any(spec.endswith(x) for x in 'eEfFgGn%'):
return float(self).__format__(spec)
return str(self).__format__(spec)
def __hash__(self):
return hash((self.n, self.d))
def __bool__(self):
return self.n != 0
##### Numeric methods - unary
def __neg__(self):
return Fraction(-self.n, self.d)
def __pos__(self):
return Fraction(self.n, self.d)
def __abs__(self):
return Fraction(abs(self.n), self.d)
def __invert__(self):
return Fraction(self.d, self.n)
def __complex__(self):
return complex(float(self))
def __int__(self):
return (self.n // self.d) + (1 if self.n < 0 else 0)
def __float__(self):
return self.n / self.d
def __index__(self):
if self.d != 1:
raise ValueError('non-integer Fraction may not be used here')
return self.n
def __round__(self, digits):
interval = Fraction(1, 10**digits)
cutoff = interval / 2
remainder = self % interval
down = self - remainder
up = down + interval
if remainder > cutoff:
return up
elif remainder < cutoff:
return down
else:
digit = (down % (interval * 10)) / interval
if digit.n % 2:
return up
return down
def __trunc__(self):
return self.__floor__() if self.n > 0 else self.__ceil__()
def __floor__(self):
return Fraction(self.n // self.d, 1)
def __ceil__(self):
return self.__floor__() + (1 if self.n % self.d else 0)
##### Numeric methods - binary
@with_fractions
def __add__(self, f):
l = Fraction.lcm(self.d, f.d)
return Fraction(self.n * l // self.d + f.n * l // f.d, l)
__radd__ = __add__
@with_fractions
def __sub__(self, f):
return self + (-f)
@with_fractions
def __rsub__(self, f):
return f - self
@with_fractions
def __mul__(self, f):
return Fraction(self.n * f.n, self.d * f.d)
__rmul__ = __mul__
@with_fractions
def __truediv__(self, f):
return self * (~f)
@with_fractions
def __rtruediv__(self, f):
return f / self
@with_fractions
def __floordiv__(self, f):
return (self / f).__floor__()
@with_fractions
def __rfloordiv__(self, f):
return f // self
@with_fractions
def __mod__(self, f):
l = Fraction.lcm(self.d, f.d)
return Fraction((self.n * l // self.d) % (f.n * l // f.d), l)
@with_fractions
def __rmod__(self, f):
return f % self
@with_fractions
def __divmod__(self, f):
return (self // f, self % f)
@with_fractions
def __rdivmod__(self, f):
return divmod(f, self)
@with_fractions
def __pow__(self, f):
if f < 0:
return (~self) ** (-f)
elif f.d == 1:
return Fraction(self.n ** f.n, self.d ** f.n)
else:
return Fraction(self.n ** float(f), self.d ** float(f))
@with_fractions
def __rpow__(self, f):
return f ** self
@with_fractions(int_only=True)
def __lshift__(self, f):
return Fraction(self.n << f.n)
@with_fractions(int_only=True)
def __rlshift__(self, f):
return f << self
@with_fractions(int_only=True)
def __rshift__(self, f):
return Fraction(self.n >> f.n)
@with_fractions(int_only=True)
def __rrshift__(self, f):
return f >> self
@with_fractions(int_only=True)
def __and__(self, f):
return Fraction(self.n & f.n)
__rand__ = __and__
@with_fractions(int_only=True)
def __xor__(self, f):
return Fraction(self.n ^ f.n)
__rxor__ = __xor__
@with_fractions(int_only=True)
def __or__(self, f):
return Fraction(self.n | f.n)
__ror__ = __or__
##### Numeric methods - comparison
@with_fractions
def __eq__(self, f):
return self.n == f.n and self.d == f.d
@with_fractions
def __lt__(self, f):
l = Fraction.lcm(self.d, f.d)
return (self.n * l // self.d) < (f.n * l // f.d)