|
| 1 | +model_name: DPA3-v2-MPtrj |
| 2 | +model_key: dpa3-v2-mptrj |
| 3 | +model_version: v0.2 # 2025-03-14 |
| 4 | +matbench_discovery_version: 1.3.1 |
| 5 | +date_added: "2025-03-14" |
| 6 | +date_published: "2025-03-14" |
| 7 | +authors: |
| 8 | + - name: Duo Zhang |
| 9 | + affiliation: AI for Science Institute, Beijing |
| 10 | + orcid: https://orcid.org/0000-0001-9591-2659 |
| 11 | + - name: Anyang Peng |
| 12 | + affiliation: AI for Science Institute, Beijing |
| 13 | + orcid: https://orcid.org/0000-0002-0630-2187 |
| 14 | + - name: Chun Cai |
| 15 | + affiliation: AI for Science Institute, Beijing |
| 16 | + orcid: https://orcid.org/0000-0001-6242-0439 |
| 17 | + - name: Linfeng Zhang |
| 18 | + affiliation: AI for Science Institute, Beijing; DP Technology |
| 19 | + |
| 20 | + corresponding: true |
| 21 | + - name: Han Wang |
| 22 | + affiliation: Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics |
| 23 | + |
| 24 | + corresponding: true |
| 25 | +trained_by: |
| 26 | + - name: Duo Zhang |
| 27 | + affiliation: AI for Science Institute, Beijing |
| 28 | + orcid: https://orcid.org/0000-0001-9591-2659 |
| 29 | +repo: https://github.com/deepmodeling/deepmd-kit/tree/devel |
| 30 | +url: https://github.com/deepmodeling/deepmd-kit/tree/devel |
| 31 | +doi: https://github.com/deepmodeling/deepmd-kit/tree/devel # to be released soon |
| 32 | +paper: https://github.com/deepmodeling/deepmd-kit/tree/devel # to be released soon |
| 33 | +pr_url: https://github.com/janosh/matbench-discovery/pull/222 |
| 34 | +trained_for_benchmark: true |
| 35 | + |
| 36 | +openness: OSOD |
| 37 | +train_task: S2EFS |
| 38 | +test_task: IS2RE-SR |
| 39 | +targets: EFS_G |
| 40 | +model_type: UIP |
| 41 | +model_params: 4_923_959 |
| 42 | +n_estimators: 1 |
| 43 | + |
| 44 | +hyperparams: |
| 45 | + max_force: 0.05 |
| 46 | + max_steps: 500 |
| 47 | + ase_optimizer: FIRE |
| 48 | + cell_filter: ExpCellFilter |
| 49 | + n_layers: 24 |
| 50 | + e_rcut: 6.0 |
| 51 | + a_rcut: 4.0 |
| 52 | + n_dim: 128 |
| 53 | + e_dim: 64 |
| 54 | + a_dim: 32 |
| 55 | + optimizer: Adam |
| 56 | + round1: |
| 57 | + loss: MSE |
| 58 | + loss_weights: |
| 59 | + energy: 0.2 -> 20 |
| 60 | + force: 100 -> 20 |
| 61 | + virial: 0.02 -> 1 |
| 62 | + initial_learning_rate: 0.001 |
| 63 | + learning_rate_schedule: ExpLR - start_lr=0.001, decay_steps=5000, stop_lr=0.00001 |
| 64 | + training_steps: 2000000 |
| 65 | + round2: |
| 66 | + loss: Huber |
| 67 | + loss_weights: |
| 68 | + energy: 15 |
| 69 | + force: 1 |
| 70 | + virial: 2.5 |
| 71 | + initial_learning_rate: 0.0002 |
| 72 | + learning_rate_schedule: ExpLR - start_lr=0.0002, decay_steps=5000, stop_lr=0.00001 |
| 73 | + training_steps: 1000000 |
| 74 | + batch_size: 64 # 16 (gpus) * 4 (batch per gpu) = 64 (total batch size) |
| 75 | + epochs: 120 # round1 80 + round2 40 |
| 76 | + |
| 77 | +requirements: |
| 78 | + torch: 2.3.1 |
| 79 | + torch-geometric: 2.5.2 |
| 80 | + ase: 3.23.0 |
| 81 | + pymatgen: 2024.6.10 |
| 82 | + numpy: 1.26.4 |
| 83 | + |
| 84 | +training_set: [MPtrj] |
| 85 | + |
| 86 | +notes: |
| 87 | + Description: | |
| 88 | + DPA3 is an advanced interatomic potential leveraging the message passing architecture, implemented within the DeePMD-kit framework, available at GitHub(https://github.com/deepmodeling/deepmd-kit/tree/devel). |
| 89 | + Designed as a large atomic model (LAM), DPA3 is tailored to integrate and simultaneously train on datasets from various disciplines, encompassing diverse chemical and materials systems across different research domains. |
| 90 | + Its model design ensures exceptional fitting accuracy and robust generalization both within and beyond the training domain. |
| 91 | + Furthermore, DPA3 maintains energy conservation and respects the physical symmetries of the potential energy surface, making it a dependable tool for a wide range of scientific applications. |
| 92 | +
|
| 93 | +metrics: |
| 94 | + phonons: |
| 95 | + kappa_103: |
| 96 | + κ_SRME: 0.959 |
| 97 | + pred_file: models/deepmd/dpa3-v2-mptrj/2025-03-14-kappa-103-FIRE-dist=0.01-fmax=1e-4-symprec=1e-5.json.gz |
| 98 | + pred_file_url: https://figshare.com/files/52988744 |
| 99 | + geo_opt: |
| 100 | + pred_file: models/deepmd/dpa3-v2-mptrj/2025-03-14-wbm-geo-opt.json.gz |
| 101 | + struct_col: dp_structure |
| 102 | + pred_file_url: https://figshare.com/files/53018849 |
| 103 | + symprec=1e-2: |
| 104 | + rmsd: 0.0164 # Å |
| 105 | + n_sym_ops_mae: 1.968 # unitless |
| 106 | + symmetry_decrease: 0.0601 # fraction |
| 107 | + symmetry_match: 0.8052 # fraction |
| 108 | + symmetry_increase: 0.1273 # fraction |
| 109 | + n_structures: 256963 # count |
| 110 | + analysis_file: models/deepmd/dpa3-v2-mptrj/2025-03-14-wbm-geo-opt-symprec=1e-2-moyo=0.4.2.csv.gz |
| 111 | + analysis_file_url: https://figshare.com/files/53019278 |
| 112 | + symprec=1e-5: |
| 113 | + rmsd: 0.0164 # Å |
| 114 | + n_sym_ops_mae: 2.1461 # unitless |
| 115 | + symmetry_decrease: 0.0766 # fraction |
| 116 | + symmetry_match: 0.7154 # fraction |
| 117 | + symmetry_increase: 0.2014 # fraction |
| 118 | + n_structures: 256963 # count |
| 119 | + analysis_file: models/deepmd/dpa3-v2-mptrj/2025-03-14-wbm-geo-opt-symprec=1e-5-moyo=0.4.2.csv.gz |
| 120 | + analysis_file_url: https://figshare.com/files/53019281 |
| 121 | + discovery: |
| 122 | + pred_file: models/deepmd/dpa3-v2-mptrj/2025-03-14-wbm-IS2RE.csv.gz |
| 123 | + pred_file_url: https://figshare.com/files/53018801 |
| 124 | + pred_col: e_form_per_atom_dp |
| 125 | + full_test_set: |
| 126 | + F1: 0.774 # fraction |
| 127 | + DAF: 4.25 # dimensionless |
| 128 | + Precision: 0.729 # fraction |
| 129 | + Recall: 0.825 # fraction |
| 130 | + Accuracy: 0.917 # fraction |
| 131 | + TPR: 0.825 # fraction |
| 132 | + FPR: 0.064 # fraction |
| 133 | + TNR: 0.936 # fraction |
| 134 | + FNR: 0.175 # fraction |
| 135 | + TP: 36393.0 # count |
| 136 | + FP: 13519.0 # count |
| 137 | + TN: 199352.0 # count |
| 138 | + FN: 7699.0 # count |
| 139 | + MAE: 0.038 # eV/atom |
| 140 | + RMSE: 0.082 # eV/atom |
| 141 | + R2: 0.796 # dimensionless |
| 142 | + missing_preds: 0 # count |
| 143 | + missing_percent: 0.00% # fraction |
| 144 | + most_stable_10k: |
| 145 | + F1: 0.980 # fraction |
| 146 | + DAF: 6.280 # dimensionless |
| 147 | + Precision: 0.960 # fraction |
| 148 | + Recall: 1.0 # fraction |
| 149 | + Accuracy: 0.960 # fraction |
| 150 | + TPR: 1.0 # fraction |
| 151 | + FPR: 1.0 # fraction |
| 152 | + TNR: 0.0 # fraction |
| 153 | + FNR: 0.0 # fraction |
| 154 | + TP: 9600.0 # count |
| 155 | + FP: 400.0 # count |
| 156 | + TN: 0.0 # count |
| 157 | + FN: 0.0 # count |
| 158 | + MAE: 0.032 # eV/atom |
| 159 | + RMSE: 0.078 # eV/atom |
| 160 | + R2: 0.866 # dimensionless |
| 161 | + missing_preds: 0 # count |
| 162 | + missing_percent: 0.00% # fraction |
| 163 | + unique_prototypes: |
| 164 | + F1: 0.786 # fraction |
| 165 | + DAF: 4.760 # dimensionless |
| 166 | + Precision: 0.737 # fraction |
| 167 | + Recall: 0.841 # fraction |
| 168 | + Accuracy: 0.929 # fraction |
| 169 | + TPR: 0.841 # fraction |
| 170 | + FPR: 0.055 # fraction |
| 171 | + TNR: 0.945 # fraction |
| 172 | + FNR: 0.159 # fraction |
| 173 | + TP: 28073.0 # count |
| 174 | + FP: 10008.0 # count |
| 175 | + TN: 172106.0 # count |
| 176 | + FN: 5301.0 # count |
| 177 | + MAE: 0.039 # eV/atom |
| 178 | + RMSE: 0.081 # eV/atom |
| 179 | + R2: 0.804 # dimensionless |
| 180 | + missing_preds: 0 # count |
| 181 | + missing_percent: 0.00% # fraction |
0 commit comments