-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
37 lines (27 loc) · 1.09 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
import numpy as np
from multi_agent_env import MultiAgentPathFollowingEnv
from ddpg import DDPGAgent
# Definir o ambiente
env = MultiAgentPathFollowingEnv(num_agents=1)
# Criar o agente DDPG com os mesmos parâmetros do treinamento
agent = DDPGAgent(state_dim=4, action_dim=2, max_action=1.0)
# Carregar os pesos do modelo treinado
checkpoint = torch.load("ddpg_model.pth", map_location=torch.device('cpu'))
agent.actor.load_state_dict(checkpoint['actor'])
agent.critic.load_state_dict(checkpoint['critic'])
agent.actor.eval() # Coloca a rede em modo de avaliação
# Rodar a simulação
num_episodes = 100 # Número de episódios de teste
for episode in range(num_episodes):
state, _ = env.reset()
done = False
episode_reward = 0
while not done:
action = agent.get_action(state) # Pegar ação do agente treinado
new_state, reward, done, _ = env.step(action)
episode_reward += reward
state = new_state
env.render() # Se houver renderização no ambiente
print(f"Episode {episode + 1}, Reward: {episode_reward}")
env.close()