Skip to content

Latest commit

 

History

History
98 lines (70 loc) · 2.83 KB

BUILD.md

File metadata and controls

98 lines (70 loc) · 2.83 KB

Build Guide

There are three components in this project,

  • frontend: a react app showing WebUI
  • server: a node.js server handling basic CRUD
  • trainer: a python asgi application handling LLM related operations

Local dev setup

Setup frontend

nvm use
cd frontend
chmod +x init_env.sh
init_env.sh
npm i
npm run dev

Setup server

nvm use
cd server
chmod +x init_env.sh
init_env.sh
npm i
npx prisma migrate dev
npm run dev

Setup trainer

0. Install Conda

https://docs.conda.io/en/latest/miniconda.html

On Linux or WSL, it can be automatically installed with these two commands (source):

curl -sL "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh" > "Miniconda3.sh"
bash Miniconda3.sh

1. Create a new conda environment

conda create -n fllms python=3.11
conda activate fllms

2. Install Pytorch

System GPU Command
Linux/WSL NVIDIA pip3 install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121
Linux/WSL CPU only pip3 install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cpu
Linux AMD pip3 install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/rocm5.6
MacOS + MPS Any pip3 install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1
Windows NVIDIA pip3 install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121
Windows CPU only pip3 install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1

The up-to-date commands can be found here: https://pytorch.org/get-started/locally/.

3. Install CUDA (optional)

For NVIDIA, you also need to install the CUDA runtime libraries. This is only required if you want to accelerate training and inference on GPU.

conda install -y -c "nvidia/label/cuda-12.1.1" cuda-runtime

If you need nvcc to compile some library manually, replace the command above with

conda install -y -c "nvidia/label/cuda-12.1.1" cuda

4. Install python dependencies and run dev mode

pip install -r requirements.txt

To run in dev mode, i.e. monitoring file changes

python watch.py

otherwise, to serve on localhost:

daphne -b 0.0.0.0 -p 8000 trainer.asgi:application