-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathindex.html
792 lines (703 loc) · 27.2 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<!-- Meta tags for social media banners, these should be filled in appropriatly as they are your "business card" -->
<!-- Replace the content tag with appropriate information -->
<meta name="description" content="DESCRIPTION META TAG">
<meta property="og:title" content="SOCIAL MEDIA TITLE TAG" />
<meta property="og:description" content="SOCIAL MEDIA DESCRIPTION TAG TAG" />
<meta property="og:url" content="URL OF THE WEBSITE" />
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X630-->
<meta property="og:image" content="static/image/your_banner_image.png" />
<meta property="og:image:width" content="1200" />
<meta property="og:image:height" content="630" />
<meta name="twitter:title" content="TWITTER BANNER TITLE META TAG">
<meta name="twitter:description" content="TWITTER BANNER DESCRIPTION META TAG">
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X600-->
<meta name="twitter:image" content="static/images/your_twitter_banner_image.png">
<meta name="twitter:card" content="summary_large_image">
<!-- Keywords for your paper to be indexed by-->
<meta name="keywords" content="KEYWORDS SHOULD BE PLACED HERE">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Citrus</title>
<link rel="icon" type="image/x-icon" href="./static/images/JoyType.png">
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet">
<link rel="stylesheet" href="static/css/bulma.min.css">
<link rel="stylesheet" href="static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="static/css/bulma-slider.min.css">
<link rel="stylesheet" href="static/css/fontawesome.all.min.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="static/css/index.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="https://documentcloud.adobe.com/view-sdk/main.js"></script>
<script defer src="static/js/fontawesome.all.min.js"></script>
<script src="static/js/bulma-carousel.min.js"></script>
<script src="static/js/bulma-slider.min.js"></script>
<script src="static/js/index.js"></script>
<style>
table {
width: auto; /* 设置表格宽度为75% */
margin-left: auto; /* 自动左边距 */
margin-right: auto; /* 自动右边距 */
border-collapse: collapse;
}
th, td {
padding: 8px;
text-align: center;
}
th {
background-color: #f2f2f2;
}
/* 只在标题行的上下加水平线 */
thead {
border-top: 2px solid black; /* 第一行上方 */
border-bottom: 2px solid black; /* 第一行下方 */
}
/* 最后一行下方加水平线 */
tbody tr:last-child {
border-bottom: 2px solid black; /* 最后一行下方 */
}
/* 其他行不加水平线 */
tbody tr {
border-bottom: none;
}
.highlight {
font-weight: bold;
}
#nav-wrapper {
display: flex;
justify-content: center;
width: 100%;
padding: 10px 0;
}
#project-nav-container {
display: flex;
align-items: center;
padding-top: 10px;
}
.home-link {
margin-right: 10px;
}
.house-icon {
fill: #333;
transition: fill 0.3s ease;
width: 24px;
height: 24px;
}
.house-icon:hover {
fill: #0366d6;
}
.select-wrapper::after {
content: "\25BC";
position: absolute;
top: 50%;
right: 10px;
transform: translateY(-50%);
pointer-events: none;
font-size: 12px;
color: #333;
}
.select-wrapper {
position: relative;
margin-left: 10px;
}
.video-carousel {
display: flex;
align-items: center;
width: 100%;
overflow: hidden;
}
.video-container {
display: flex;
transition: transform 0.3s ease;
}
.video-wrapper {
flex: 0 0 33.33%;
padding: 0 10px;
}
.video-wrapper2 {
flex: 0 0 33.33%;
padding: 0 10px;
}
video {
width: 100%;
}
button {
font-size: 24px;
background: none;
border: none;
cursor: pointer;
}
#project-nav {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
background: transparent;
border: none;
padding: 5px 30px 5px 10px;
font-size: 16px;
cursor: pointer;
outline: none;
}
.carousel-wrapper {
width: 100%;
max-width: 800px; /* 根据需要调整 */
margin: 0 auto;
}
.video-container {
width: 100%;
overflow: hidden;
/* 其他视频容器样式 */
}
.button-container {
display: flex;
justify-content: center;
margin-top: 20px; /* 调整按钮与视频之间的距离 */
}
.home-link {
margin-top: 10px; /* 向下移动 */
margin-left: 60px; /* 向右移动 */
}
.prev-btn, .next-btn {
padding: 10px 20px;
margin: 0 10px;
background-color: #f0f0f0;
border: none;
border-radius: 5px;
cursor: pointer;
}
.prev-btn:hover, .next-btn:hover {
background-color: #e0e0e0;
}
/* .carousel-container {
width: 135%;
max-width: 1200px;
margin: 0 auto;
overflow: hidden;
} */
.carousel-container {
width: 100%;
max-width: 2000px;
margin: 0 auto;
overflow: hidden;
padding: 10px 0; /* 添加上下内边距 */
box-sizing: border-box;
text-align: center; /* 使内部内联元素居中 */
}
.video-container {
display: flex;
transition: transform 0.5s ease;
}
.video-container2 {
display: flex;
transition: transform 0.5s ease;
}
/* 确保视频容器宽度与图片容器一致 */
.video-wrapper-0 {
flex: 0 0 100%; /* 与图片容器宽度一致 */
padding: 0 10px;
box-sizing: border-box;
margin: 0 auto; /* 居中显示 */
}
/* 确保视频自适应宽度 */
.video-wrapper-0 video {
width: 100%; /* 视频自适应容器宽度 */
height: auto; /* 保持纵横比 */
}
.video-wrapper {
flex: 0 0 33.333%;
padding: 0 10px;
box-sizing: border-box;
}
.video-wrapper2 {
flex: 0 0 33.333%;
padding: 0 10px;
box-sizing: border-box;
}
video {
width: 100%;
height: auto;
}
.button-container {
display: flex;
justify-content: center;
margin-top: 20px;
}
.prev-btn, .next-btn {
padding: 10px 20px;
margin: 0 10px;
background-color: #f0f0f0;
border: none;
border-radius: 5px;
cursor: pointer;
}
.video-wrapper {
display: none;
}
.video-wrapper2{
display: none;
}
.video-wrapper.active {
display: inline-block;
}
.video-wrapper2.active {
display: inline-block;
}
.video-container {
display: flex;
flex-wrap: wrap;
justify-content: center;
}
.video-container2 {
display: flex;
flex-wrap: wrap;
justify-content: center;
}
.prev-btn:hover, .next-btn:hover {
background-color: #e0e0e0;
}
.video-container {
display: flex;
justify-content: center; /* 或 flex-start, flex-end 等,根据需要调整 */
align-items: center;
}
.video-container2 {
display: flex;
justify-content: center; /* 或 flex-start, flex-end 等,根据需要调整 */
align-items: center;
}
.demo-video {
width: 8%;
min-width: 1100px;
max-width: 1400px;
}
.video-wrapper2 {
display: none;
}
.video-wrapper2 {
display: none;
}
.video-wrapper2.active {
display: inline-block;
}
.video-container2 {
display: flex;
flex-wrap: wrap;
justify-content: center;
}
</style>
</head>
<body>
<div id="nav-wrapper">
<div id="project-nav-container">
<a href="https://github.com/jdh-algo" title="GitHub主页" class="home-link">
<svg class="house-icon" viewBox="0 0 24 24" width="24" height="24">
<path d="M10 20v-6h4v6h5v-8h3L12 3 2 12h3v8z"/>
</svg>
</a>
<div class="select-wrapper">
<select id="project-nav" onchange="location = this.value;">
<option value="">More Research</option>
<option value="https://jdh-algo.github.io/Citrus/">Citrus</option>
</select>
</div>
</div>
</div>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-3 publication-title">Citrus: Leveraging Expert Cognitive Pathways in a Medical Language Model for Advanced Medical Decision Support</h1>
<div class="is-size-5 publication-authors">
<!-- Paper authors -->
<span class="author-block">
<a target="_blank">Guoxin Wang</a><sup>1*</sup>,</span>
<span class="author-block">
<a target="_blank">Minyu Gao</a><sup>1</sup>,</span>
<span class="author-block">
<a target="_blank">Shuai Yang</a><sup>1</sup>,</span>
<span class="author-block">
<a target="_blank">Ya Zhang</a><sup>1</sup>,</span>
<span class="author-block">
<a target="_blank">Lizhi He</a><sup>1</sup>,</span>
<span class="author-block">
<a target="_blank">Liang Huang</a><sup>1</sup>,</span>
<span class="author-block">
<a target="_blank">Hanlin Xiao</a><sup>1†</sup>,</span>
<span class="author-block">
<a target="_blank">Yexuan Zhang</a><sup>1</sup>,</span>
<span class="author-block">
<a target="_blank">Wanyue Li</a><sup>1</sup>,</span>
<span class="author-block">
<a target="_blank">Lu Chen</a><sup>1</sup>,</span>
<span class="author-block">
<a target="_blank">Jintao Fei</a><sup>1</sup>,</span>
<span class="author-block">
<a target="_blank">Xin Li</a><sup>1</sup></span>
</div>
<div class="is-size-5 publication-authors">
<sup>1</sup> <span class="author-block">Citrus Team, JD Health International Inc</span> <br>
<sup>*</sup> <span class="author-block">Project Lead</span> <br>
<sup>†</sup> <span class="author-block">Work done during the internship at Citrus Team.</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<span class="link-block">
<a href="https://arxiv.org/abs/2502.18274" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>Paper</span>
</a>
</span>
<span class="link-block">
<a href="https://arxiv.org/abs/2502.18274" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- Github link -->
<span class="link-block">
<a href="https://github.com/jdh-algo/Citrus" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- huggingface model Link -->
<span class="link-block">
<a href="https://huggingface.co/jdh-algo/Citrus1.0-llama-70B" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<img src="./static/images/artificial-intelligence.png">
</span>
<span>Model</span>
</a>
</span>
<!-- huggingface model Link -->
<span class="link-block">
<a href="https://huggingface.co/datasets/jdh-algo/Citrus_S3" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<img src="./static/images/database.png">
</span>
<span>Medical Reasoning Data</span>
</a>
</span>
<!-- huggingface model Link -->
<span class="link-block">
<a href="https://huggingface.co/datasets/jdh-algo/JMED" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<img src="./static/images/database.png">
</span>
<span>Evaluation Data</span>
</a>
</span>
<!-- huggingface demo Link
<span class="link-block">
<a href="https://huggingface.co/spaces/jdh-algo/JoyHallo" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<img src="./static/images/hf-logo.png">
</span>
<span>Gradio</span>
</a>
</span> -->
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="section" style="margin-bottom: 10px; padding: 5px;">
</div>
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-4" style="text-align: left;" >Abstract</h2>
<div class="content has-text-justified">
<p>
Large language models (LLMs), particularly those with reasoning capabilities, have rapidly advanced in recent years, demonstrating significant potential across a wide range of applications. However, their deployment in healthcare, especially in disease reasoning tasks, is hindered by the challenge of acquiring expert-level cognitive data. In this paper, we introduce Citrus, a medical language model that bridges the gap between clinical expertise and AI reasoning by emulating the cognitive processes of medical experts. The model is trained on a large corpus of simulated expert disease reasoning data, synthesized using a novel approach that accurately captures the decision-making pathways of clinicians. This approach enables Citrus to better simulate the complex reasoning processes involved in diagnosing and treating medical conditions.To further address the lack of publicly available datasets for medical reasoning tasks, we release the last-stage training data, including a custom-built medical diagnostic dialogue dataset. This open-source contribution aims to support further research and development in the field. Evaluations using authoritative benchmarks such as MedQA, covering tasks in medical reasoning and language understanding, show that Citrus achieves superior performance compared to other models of similar size. These results highlight Citrus’s potential to significantly enhance medical decision support systems, providing a more accurate and efficient tool for clinical decision-making.
</p>
</div>
</div>
</div>
</div>
</section>
<!-- End paper abstract -->
<section class="section" style="margin-bottom: 10px; padding: 5px;">
</div>
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-4" style="text-align: left;" >Contributions</h2>
<div class="content has-text-justified">
<p>
1. We propose a training-free reasoning approach that emulates the cognitive processes of medical experts, enabling large language models to enhance their medical capabilities in clinical diagnosis and treatment.
</p>
<p>
2. In conjunction with the data construction method, we introduce a multi-stage post-training approach to further improve the model’s medical performance.
</p>
<p>
3. We have made the Citrus model and its training data publicly available as open-source resources to advance research in AI-driven medical decision-making.
</p>
<p>
4. We have developed and open-sourced a large-scale, updatable clinical practice evaluation dataset based on real-world data, accurately reflecting the distribution of patients in real-world settings.
</p>
</div>
</div>
</div>
</div>
</section>
<!-- Paper Method -->
<section class="section" style="margin-bottom: 10px; padding: 5px;">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<!-- <h2 class="title is-4" style="text-align: left;">Method</h2> -->
<!-- <h3 class="title is-5" style="text-align: left;">模型训练的主要细节</h3> -->
<!-- <div class="content has-text-justified">
<p>
模型训练的主要细节
</p>
</div> -->
<br>
<img src="./static/images/雷达图.png" style="display: block; margin: 0 auto; width: 100%; max-width: 100%; height: auto;">
<div class="content has-text-justified">
<p>
<!-- continue -->
</p>
</div>
</div>
</div>
</div>
</section>
<section class="section" style="margin-bottom: 10px; padding: 5px;">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-4" style="text-align: left;">Model Access</h2>
<div class="content has-text-justified">
<table>
<thead>
<tr>
<th>Model Name</th>
<th>Backbone</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<!-- First Method -->
<tr>
<td>Citrus1.0-llama-70B</td>
<td>llama-70B</td>
<td><a href="https://huggingface.co/jdh-algo/Citrus1.0-llama-70B" target="_blank">Model Link</a></td>
</tr>
<!-- Second Method -->
<tr>
<td>Citrus1.0-Qwen-72B</td>
<td>Qwen-72B</td>
<td><a href="https://huggingface.co/jdh-algo/Citrus1.0-Qwen-72B" target="_blank">Model Link</a></td>
</tr>
</table>
</div>
<div class="content has-text-justified">
<p>
<!-- continue -->
</p>
</div>
</div>
</div>
</div>
</section>
<section class="section" style="margin-bottom: 10px; padding: 5px;">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-4" style="text-align: left;">Data Access</h2>
<div class="content has-text-justified">
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Dataset Usage</th>
<th>Dataset Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus_S3</td>
<td>Train Data</td>
<td>A portion of the training data for the model includes 20k data points.</td>
<td><a href="https://huggingface.co/datasets/jdh-algo/Citrus_S3" target="_blank">Data Link</a></td>
</tr>
<tr>
<td>JMED</td>
<td>Test Data</td>
<td>The dataset originates from anonymized doctor-patient dialogues at JD Health Internet Hospital, filtered to retain consultations adhering to standardized diagnostic workflows. The initial release contains 1,000 high-quality clinical records spanning all age groups (0-90 years) and multiple specialties.</td>
<td><a href="https://example.com/data-link" target="_blank">Data Link</a></td>
</tr>
<!-- 可以在这里添加更多数据描述信息 -->
</tbody>
</table>
</div>
<div class="content has-text-justified">
<p>
<!-- continue -->
</p>
</div>
</div>
</div>
</div>
</section>
<!-- Paper Method -->
<section class="section" style="margin-bottom: 10px; padding: 5px;">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-4" style="text-align: left;">Method</h2>
<h3 class="title is-5" style="text-align: left;">1. Main approaches</h3>
<div class="content has-text-justified">
<p>
LLMs preforms similar cognitive pathways as medical experts.CPT enabled LLMs to learn medical knowledge and perform pattern recognition as doctors do, meanwhile LLMs are capable to handle hypothetical-deductive reasoning by executing several specific reasoning steps, which can be trained through SFT and RL procedure
</p>
</div>
<br>
<img src="./static/images/figure4-1-2.png" style="display: block; margin: 0 auto; width: 100%; max-width: 100%; height: auto;">
<br>
<h3 class="title is-5" style="text-align: left;">2. Overview of training stages and training data pipeline</h3>
<div class="content has-text-justified">
<p>
The training process consists of three stages: CPT, SFT, and RL. We shows training purposes and dataset scale on each stage, also, we points out the data pipeline in corresponding stage
</p>
</div>
<br>
<img src="./static/images/figure4-2-1.png" style="display: block; margin: 0 auto; width: 100%; max-width: 100%; height: auto;">
</div>
</div>
</div>
</section>
<!-- Paper Results -->
<section class="section" style="margin-bottom: 10px; padding: 5px;">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-4" style="text-align: left;">Results</h2>
<h3 class="title is-5" style="text-align: left;">1. Main Results on Medical Benchmarks</h3>
<div class="content has-text-justified">
<p>
<!-- 主要结果 -->
</p>
</div>
<br>
<img src="./static/images/main_results.png" style="display: block; margin: 0 auto; width: 100%; max-width: 100%; height: auto;">
<br>
<h3 class="title is-5" style="text-align: left;">2. The experiments on Citrus1.0-Llama-70B</h3>
<div class="content has-text-justified">
<p>
<!-- The SFT stage results and RL stage results are shown in sequence to show different contributions to final perform of model from different stages. We also implemented several experiments to reveal the impact from data size and data portion. "w/o" and "w/" denote "without" and "with". Bold highlights the best scores in each segment.Use MedQA benchmark to evaluate the influence on different training stages and data sizes. -->
</p>
</div>
<br>
<img src="./static/images/Abalation_studies.png" style="display: block; margin: 0 auto; width: 100%; max-width: 100%; height: auto;">
</div>
</div>
</div>
</section>
<!-- End Paper Method -->
<!-- Paper Experiment -->
<section class="section" style="margin-bottom: 10px; padding: 5px;">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<div class="content has-text-justified">
</div>
</div>
</div>
</div>
</div>
</div>
<br>
<!-- <br> -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
</div>
</div>
<!-- BibTex citation -->
<!-- <section class="section" id="BibTeX" style="margin-bottom: 10px; padding: 5px;"> -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<div class="columns is-centered ">
<div class="column is-four-fifths">
<h2 class="title is-4" >BibTeX</h2>
<!-- <div class="content has-text-justified"> -->
<pre class="has-text-justified" style="margin-bottom: 5px; margin-top: 5px; padding: 5px;">
<code>
@misc{wang2025citrus,
title={Citrus: Leveraging Expert Cognitive Pathways in a Medical Language Model for Advanced Medical Decision Support},
author={Guoxin Wang and Minyu Gao and Shuai Yang and Ya Zhang and Lizhi He and Liang Huang and Hanlin Xiao and Yexuan Zhang and Wanyue Li and Lu Chen and Jintao Fei and Xin Li},
year={2025},
eprint={2502.18274},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2502.18274}, }
</code>
</pre>
</div>
</div>
</div>
</section>
<!--End BibTex citation
<footer class="footer">
<div class="container">
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This page was built using the <a href="https://github.com/eliahuhorwitz/Academic-project-page-template"
target="_blank">Academic Project Page Template</a> which was adopted from the <a
href="https://nerfies.github.io" target="_blank">Nerfies</a> project page.
</p>
</div>
</div>
</div>
</div>
</footer>
<!-- Statcounter tracking code -->
<!-- You can add a tracker to track page visits by creating an account at statcounter.com -->
<!-- End of Statcounter Code -->
<script>
const videoWrappers = document.querySelectorAll('.video-wrapper2');
let currentIndex = 0;
const videosToShow = 3;
function updateVideos() {
videoWrappers.forEach((video, index) => {
video.classList.remove('active');
if (index >= currentIndex && index < currentIndex + videosToShow) {
video.classList.add('active');
}
});
}
document.querySelector('.prev-btn').addEventListener('click', () => {
currentIndex = (currentIndex > 0) ? currentIndex - 1 : videoWrappers.length - videosToShow;
updateVideos();
});
document.querySelector('.next-btn').addEventListener('click', () => {
currentIndex = (currentIndex < videoWrappers.length - videosToShow) ? currentIndex + 1 : 0;
updateVideos();
});
updateVideos();
</script>
</body>
</html>