-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemand.py
117 lines (94 loc) · 5.02 KB
/
demand.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import data_generator
from deepiv.networks import DeepIVMulti as DeepIV
from ensembles import ModeIV, MeanEnsemble
import torch
import torch.utils.data
import numpy as np
import os
import pathlib
import time
import argparse
parser = argparse.ArgumentParser("Experiment runner")
parser.add_argument("-n", "--n_train", type=int, default=1000)
parser.add_argument("--epochs", type=int, default=None)
parser.add_argument("--batch_size", type=int, default=100)
parser.add_argument("--bias", type=float, default=1.)
parser.add_argument("--variance", type=float, default=1.)
parser.add_argument("--cuda", action='store_true')
parser.add_argument("--uid", default="")
parser.add_argument("--save_models", action='store_true')
parser.add_argument("--n_inst", type=int, default=3)
parser.add_argument("--n_valid", type=int, default=None)
parser.add_argument("--max_inst", type=int, default=None)
parser.add_argument("--rho", type=float, default=0.5)
parser.add_argument("--seed", type=int, default=1234)
args = parser.parse_args()
device = 'cuda' if args.cuda else 'cpu'
args.max_inst = args.n_inst - 1 if args.max_inst is None else args.max_inst
if args.seed is not None:
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if len(args.uid) > 0:
# we're running a cluster job - sleep for some random amount of time between
# 0 and 20 seconds to minimize collisions between job writing
s = np.random.rand() * 20
print(f"sleeping for {s} secs")
time.sleep(s)
n_valid = np.random.randint(2,args.n_inst) if args.n_valid is None else args.n_valid
dataset_all = data_generator.MultiDemand(args.n_train, args.n_inst, seed=args.seed,
ypcor=args.rho, n_valid=n_valid,
scale_exclusion=args.bias * 60.,
scale_noise=args.variance)
corr = str(tuple(np.arange(args.n_inst)[dataset_all.valid])).replace(', ', '-')
print(corr, n_valid)
filename = 'results/rerun_bias_variance.csv'
if not os.path.exists(f'{filename}'):
with open(filename, 'a') as f:
print('seed,model,n_inst,n_valid,bias,variance,mse', file=f)
performace_string = f"{args.seed},"+"{model}"+f",{args.n_inst},{args.n_valid},{args.bias},{args.variance},"+"{mse}"
path = pathlib.Path.cwd() / 'saved' / 'demand-new' / str(args.bias) / str(args.variance) / str(args.n_valid) / str(args.seed)
os.makedirs(path, exist_ok=True)
# Train the ensemble
models = {}
for i in range(args.n_inst):
models[i] = DeepIV(dataset_all, device='cuda' if torch.cuda.is_available() else 'cpu', weight_decay_treat=0.0001,
weight_decay_resp=0.001, valid_inst=[i], uid=args.uid)
models[i].fit(epochs_response=args.epochs, epochs_treatment=args.epochs, batch_size=args.batch_size)
perf = dataset_all.evaluate(lambda x,z,t: models[i].predict(t,x,z))
print(performace_string.format(model=f'deepiv-[{i}]', mse=perf),file=open(filename, 'a'))
print(performace_string.format(model=f'deepiv-[{i}]', mse=perf))
if args.save_models:
torch.save(models[i].treatment_net.state_dict, path / f'treatment-{i}.pt')
torch.save(models[i].response_net.state_dict, path / f'response-{i}.pt')
for p_ in range(2,9):
ens = ModeIV(models, k=p_)
perf = dataset_all.evaluate(lambda x,z,t: ens.predict(t,x,z).detach().cpu().numpy())
print(performace_string.format(model=f'Eps-{p_}-min', mse=perf),file=open(filename, 'a'))
print(performace_string.format(model=f'Eps-{p_}-min', mse=perf))
# Baselines
# Mean
ens = MeanEnsemble(models)
perf = dataset_all.evaluate(lambda x,z,t: ens.predict(t,x,z).detach().cpu().numpy())
print(performace_string.format(model=f'ens-mean', mse=perf),file=open(filename, 'a'))
print(performace_string.format(model=f'ens-mean', mse=perf))
# Opt
opt = DeepIV(dataset_all, device='cuda' if torch.cuda.is_available() else 'cpu', weight_decay_treat=0.0001,
weight_decay_resp=0.001, valid_inst=np.arange(args.n_inst)[dataset_all.valid == 1], uid=args.uid)
opt.fit(epochs_response=args.epochs,
epochs_treatment=args.epochs)
perf = dataset_all.evaluate(lambda x,z,t: opt.predict(t,x,z))
print(performace_string.format(model=f'deepiv-opt', mse=perf),file=open(filename, 'a'))
print(performace_string.format(model=f'deepiv-opt', mse=perf))
if args.save_models:
torch.save(opt.treatment_net.state_dict, path / f'treatment-valid.pt')
torch.save(opt.response_net.state_dict, path / f'response-valid.pt')
# All
opt = DeepIV(dataset_all, device='cuda' if torch.cuda.is_available() else 'cpu', weight_decay_treat=0.0001,
weight_decay_resp=0.001, valid_inst=np.arange(args.n_inst), uid=args.uid)
opt.fit(epochs_response=args.epochs,epochs_treatment=args.epochs)
perf = dataset_all.evaluate(lambda x,z,t: opt.predict(t,x,z))
print(performace_string.format(model=f'deepiv-all', mse=perf),file=open(filename, 'a'))
print(performace_string.format(model=f'deepiv-all', mse=perf))
if args.save_models:
torch.save(opt.treatment_net.state_dict, path / f'treatment-all.pt')
torch.save(opt.response_net.state_dict, path / f'response-all.pt')