-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
58 lines (43 loc) · 1.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import tensorflow as tf
from numpy import *
import parse
import numpy as np
import common
import sys
def train(model="categorizer", file_x="data-x.csv", file_y="data-y.csv"):
x = tf.contrib.learn.datasets.base.load_csv_without_header(filename=file_x, target_dtype=np.float32, features_dtype=np.float32)
old_x = concatenate((mat(x.data), mat(x.target).T),axis=1)
x = old_x[:,1:]
y = tf.contrib.learn.datasets.base.load_csv_without_header(filename=file_y, target_dtype=np.int32, features_dtype=np.int32)
y = mat(y.target).T
if shape(x)[0] != shape(y)[0]:
raise NameError('matrices do not match!')
data = concatenate((x, y),axis=1)
data = parse.shuffle(data)
train, test = parse.split(data)
trainX, trainY = parse.splitLabels(train)
testX, testY = parse.splitLabels(test)
featureCount = shape(trainX)[1]
print 'feature count ' + str(featureCount)
print 'training set ' + str(shape(trainX)[0])
print 'testing set ' + str(shape(testX)[0])
classifier = common.prepare_classifier("./" + model + "-model", featureCount)
print 'Training start'
classifier.fit(x=trainX, y=trainY, steps=2000)
print 'Training done'
accuracy_score = classifier.evaluate(x=testX, y=testY)["accuracy"]
print('Accuracy: {0:f}'.format(accuracy_score))
#for i in range(10):
# sample = parse.grab(old_x, 1)
# g = int(sample.item((0,0)))
# y = classifier.predict(sample[:,1:])
# print('Guessing {} to be {}'.format(str(g), str(y)))
def run(categories):
for category in categories:
train(category, category + "-x.csv", category + "-y.csv")
print "Training of " + category + " done"
print
if len(sys.argv) < 2:
raise NameError("specify a list of categories (e.g. python train.py doprava,prodej_pronajem)")
cats = sys.argv[1].split(',')
run(cats)