-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_tobe_remove_index.py
50 lines (38 loc) · 1.42 KB
/
_tobe_remove_index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from transformers import AutoTokenizer, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, AutoModelForSeq2SeqLM, Seq2SeqTrainer
from datasets import load_dataset
data = load_dataset("opus_books", "en-fr")
data = data["train"].train_test_split(test_size=0.2)
print(data)
prefix = "translate English to Morse: "
checkpoint="google-t5/t5-small"
# Tokenization
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
def dataGeneration(examples):
input = [prefix + example["en"] for example in examples["translation"]]
target = [text_to_morse(example["en"]) for example in examples["translation"]]
tokenized = tokenizer(input, text_target=target, max_length=128, truncation=True)
return tokenized
print("Start...")
tokenized_data = data.map(dataGeneration, batched=True)
print(tokenized_data["train"][0])
data_collator = DataCollatorForSeq2Seq(tokenizer, model=checkpoint)
training_args = Seq2SeqTrainingArguments(
output_dir="t5morse",
learning_rate=2e-5,
eval_strategy="epoch",
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
weight_decay=0.01,
num_train_epochs=5,
predict_with_generate=True,
)
trainer = Seq2SeqTrainer(
model = model,
args=training_args,
train_dataset=tokenized_data["train"],
eval_dataset=tokenized_data["test"],
tokenizer=tokenizer,
data_collator=data_collator,
)
trainer.train()