-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathz1GmKx.m
124 lines (108 loc) · 2.93 KB
/
z1GmKx.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
function S = GmKx(quant,kx,f,N,params);
% function S = GmKx(quant,kx,f,N,params);
% Return 1-D horizontal wave-number spectra.
%
% quant is one of 'U','V','Vel' = U+V,
% 'Uz','Vz','Shear','Disp','Strain'.
%
% kx are the horizontal wave numbers we want in the spectrum [cpm]. The
% function assumes an isotropic wave field kh=sqrt(kx^2+ky^2).
%
% f is the Coriolis freq [rad/s]
% N is the buoyancy freq [rad/s]
%
% params is a list of parameters. Must contain:
% params.s
% .t
% .jstar
% .jp
%
% Optional entries are:
% .Nphi - integration resolution in frequency
% .Nz - integration resolution in kH
% .trimlow - 1 implies no wavenumbers corresponding to j<1
% .trimhigh - 1 implies no wavenumbers above kz=0.1 cpm.
% $Id$
% J. Klymak, April, 2004.
Nphi = 400;
Nz=500;
trimlow=1;
trimhigh=1;
b=1300;
N0 = 5.2e-3;
E0 = 6.3e-5;
possible={'Nphi','Nz','trimlow','trimhigh','b','N0','E0'};
for i=1:length(possible);
if isfield(params,possible(i));
eval(sprintf('%s=%f;',possible{i},params.(possible{i})))
end;
end;
if isfield(params,'Ef');
error('This routines does not recognize changes in params.Ef');
end;
% Set the parameters that must be set.
s=params.s;
t=params.t;
jp = params.jp;
jstar = params.jstar;
% Get normalization constant I
I = s*gamma(t/s)./gamma(1/s)./gamma((t-1)/s)
%Nphi = 50;
eps = f/N;
phi = (1:(Nphi))*(acos(eps))/(Nphi+1);
dphi = median(diff(phi));
S = 0*kx;
if jstar<0
j0=20;jinf=10;
om = f*sec(phi);
om0=f;
ominf = 1.133*2*pi/3600
omm=0.173*2*pi/3600
je = j0+0.5*(jinf-j0).*(1-tanh((log10(om/f)-log10(omm/f))./(0.25* ...
log10(om0/ominf))));
J=2.1
jstar = je./J
end;
% frequency dependence
B = repmat(gmFreqPhi(phi,f),Nz,1);
% d omega
dom = repmat(f.*tan(phi).*sec(phi)*dphi,Nz,1);
Phi = repmat(phi,Nz,1);
if length(jstar)>1
jstar = repmat(jstar,Nz,1);
end;
for i=1:length(kx);
i
% horizontal - omega dependence...
[A,Z] = gmHorizPhi(Phi,f,jstar,jp,N,b,N0,I,s,t,kx(i),Nz,params);
% Data type dependencies - this is for Z^2.
switch upper(quant(1:min(3,end)))
case upper('En')
R=1;
case upper('dis')
R = b.^2*N0/N.*sin(Phi).^2;
case upper('Vel')
R = b.^2*N0*N*(1+cos(Phi).^2);
case upper('Uz')
R = b.^2*N0*N*(1+cos(Phi).^2);
case upper('Str')
error('Strain not implemented properly');
R = b.^2*N0/N.*sin(Phi).^2.*(2*pi).^2.* ...
kx(i).^2.*(Z.^2+1).*...
(N^2-f^2.*sec(Phi).^2)./tan(Phi).^2./f.^2;
case upper('She')
R = b.^2*N0*N.*(1+cos(Phi).^2).*(N^2-f^2.*sec(Phi).^2)./ ...
tan(Phi).^2./f.^2;
R = (4*pi^2)*R.*kx(i).^2.*(Z.^2+1);
otherwise
error(sprintf('Do not recognize quant=%s',upper(quant)));
end;
dz= repmat(diff(Z(1:2,:)),size(Z,1),1);
da = kx(i).*Z./sqrt(Z.^2+1).*dz;
% Tda cancels stuff, so just do that here and save some time...
Tda = 1./sqrt(Z.^2+1).*dz;
TT = B.*R.*A.*Tda.*dom;
S(i) = sum(TT(:));
end;
%% Some more constants,,,
S= S*2/pi*E0