-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDiffract.py
234 lines (208 loc) · 9.83 KB
/
Diffract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#!/usr/bin/env python
"""
Diffract.py
"""
__date__ = "20130101"
__author__ = "jlettvin"
__maintainer__ = "jlettvin"
__email__ = "[email protected]"
__copyright__ = "Copyright(c) 2013 Jonathan D. Lettvin, All Rights Reserved"
__license__ = "GPLv3"
__status__ = "Production"
__version__ = "0.0.1"
"""
Diffract.py
Implements an Airy function generator/convolver.
Copyright(c) 2013 Jonathan D. Lettvin, All Rights Reserved"
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
###############################################################################
import sys, itertools, scipy
from scipy import array, arange, ones, zeros
from scipy import exp, sqrt, pi, fabs, ceil
from scipy import set_printoptions
from scipy.special import j1
from scipy.misc import imresize
from scipy.ndimage.interpolation import affine_transform
from Image import fromarray
from Pickets import Pickets
from Report import Report
###############################################################################
set_printoptions(precision=2, suppress=True, linewidth=150)
###############################################################################
class Human(Report):
aawf = {'radius' : 0e+0,
'amplitude' : 1e+0,
'aperture' : 1e-3,
'wavelength': 4e-7,
'focal' :17e-3}
zeroPoints = [ # u values where Airy goes to zero, discovered by hand.
3.83170611001,
7.01558711101,
10.1734711001, # Maximum kernel radius parameter.
# u = (pi*r*a) / (w*f) where:
# r radius kernel max
# a aperture diameter (fixed for a given iteration)
# w wavelength nanometers (fixed for a color plane)
# f focal length (fixed for a human eye)
# The radius of a kernel is determined by setting all other values.
13.3236911001,
16.4706211111,
19.6158611111]
maxima = [
{'u': 0.0 , 'a': 1.0 }, # 1/1
{'u': 5.13562311005, 'a': 0.0174978627858 }, # ~1/57
{'u': 8.41724511071, 'a': 0.00415799638453 }, # ~1/240
# This is proof that only three maxima and three zeros are needed
# for 32 bit color (8bit Red, Green, and Blue).
{'u': 11.6198420998, 'a': 0.00160063766822 }, # ~1/624
{'u': 14.7959530997, 'a': 0.000779445355471}, # ~1/1284
{'u': 17.9598201116, 'a': 0.000437025551621}, # ~1/2288
{'u': 21.1169981116, 'a': 0.000269287409511},] # ~1/3717
@property
def parameters(self):
return Human.aawf
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def __init__(self, **kw):
"""
__init__ generates triangular kernel wedges
then distributes the wedge over eight-fold symmetry
to fill an entire square of odd length edge.
"""
self.kw = kw
self.verbose = self.kw.get('verbose', False)
self.ignore = self.kw.get('ignore', 1.0/255.0)
self.coeff = 2e-1
self.radius = self.kernelRadius(**kw)
self.edge = 1 + 2 * self.radius
self.shape = (self.edge, self.edge)
self.original = zeros(self.shape, float)
self.offset = Pickets(4)
self.pickets = Pickets(1)
kw['radius'] = 0.0
test = self.wave()
if self.verbose:
self.info('generating kernels for %d radial intervals' %
(self.offset.interval))
if self.kw.get('generate', False):
w, a = 534e-9, 7e-3
# Generate kernels for sub-pixel offsets.
for dx, dy in self.offset.data:
kernel = self.genAiry(dx, dy, w, a)
else:
pass
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def wave(self, **kw):
amplitude, r, a, w, f = (
kw.get(key, Human.aawf[key]) for key in (
'amplitude', 'radius', 'aperture', 'wavelength', 'focal'))
u = (pi*r*a)/(w*f)
if isinstance(r,float):
return amplitude*(1.0 if u == 0.0 else 2.0*j1(u)/u)
else:
u[u==0.0] = 1e-32
return amplitude*2.0*j1(u)/u
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def kernelRadius(self, **kw):
"""
For r in millimeters:
u = (pi*r*a) / (w*f) # Standard calculation for wave equation
r = (u*w*f) / (pi*a) # Algebraic method for determining radius
wiggle # Leaves room for picket wiggle
"""
a, w, f = (float(kw.get(key, Human.aawf[key]))
for key in ('aperture', 'wavelength', 'focal'))
mm_per_meter, h = Human.zeroPoints[2], 1e6
return int(ceil((mm_per_meter * h * w * f) / (pi*a)))
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def genRadii(self, R, dxy=(0.0,0.0), exy=(0.0,0.0)):
edge = 1.0 + 2.0 * R
um = 1e-6
accum = zeros((edge, edge), float)
radii = zeros((edge, edge), float)
dx, dy = dxy
ex, ey = exy
sequence = [(X, Y, um*float(X-R), um*float(Y-R)) for X, Y in
list(itertools.product(range(int(edge)), repeat=2))]
for X, Y, x, y in sequence:
radii[X,Y] = sqrt((x+dx+ex)**2 + (y+dy+dy)**2)
return accum
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def genAiry(self, dx, dy, w, a, **kw):
if self.verbose:
self.info("generating kernel at offset(%1.1f,%1.1f)" % (dx,dy))
um = 1e-6 # microns in meters
kw['aperture' ] = a # millimeters in meters
kw['wavelength'] = w # nanometers in meters
R = self.radius = self.kernelRadius(**kw) # max displace from (0,0)
R1 = R + 1 # slop for subpixel offset
self.edge = 1 + 2 * R1 # linear size of mask
radii = zeros((self.edge, self.edge), float)
accum = zeros((self.edge, self.edge), float)
# Make a list of [X,Y] indices and (x,y) coordinates from (0,0) center.
sequence = [(X, Y, um*float(X-R1), um*float(Y-R1)) for X, Y in
list(itertools.product(range(self.edge), repeat=2))]
# List of sub-pixel displacements
pickets1 = [[0.0,0.0],]
pickets2 = array(self.pickets.data) * um
# Introduce multiple small offsets to emulate a pixel's
# physical face size. This eliminates sampling errors
# that would artificially amplify exactly centered pixels.
for ex, ey in pickets2:
for X, Y, x, y in sequence:
# Determine optical displacement
radii[X,Y] = sqrt((x+dx+ex)**2 + (y+dy+dy)**2)
kw['radius'] = radii
# Generate wave function
component = self.wave(**kw)
# Eliminate radii outside third zero?
component[radii > (R*um)] = 0.0
# Sum (precursor to discrete integration.
accum += component
# Normalize to sqrt of intensity map sum
accum /= sqrt((accum ** 2).sum())
# Keep a copy as a file.
self.save(accum, R, dx, dy)
# Return kernel.
return accum
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def genGauss(self, r=3.0, **kw):
# 1/255 is interpreted as a threshold value of light detection.
# Gauss is value = exp(-coeff * r * r)
# 1/255 = exp(-coeff * r * r)
# log(1/255) = -coeff * r * r
# -log(1/(255*r*r)) = coeff
radii = self.genRadii(r) # Make a field of radii
coeff = - scipy.log(1.0 / (255.0 * r * r)) # Calculate coefficient
accum = exp(-coeff * radii)**2 # Make a Gaussian field
accum[radii>r] = 0.0 # Eliminate outliers
fudge = 0.95 # Reduce mask (why?)
accum *= fudge / accum.sum() # normalize mask
return accum
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def save(self, kernel, R, dx=0, dy=0, **kw):
rescaled = (255.0 * kernel).astype('uint8')
name = "kernels/Airy/kernel.Airy.R%d.dx%1.2f.dy%1.2f" % (R, dx, dy)
image = fromarray(rescaled)
image.save(name+".png")
scipy.save(name+".npy", kernel)
#MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
if __name__ == "__main__":
def test_kernel_radius(human):
aawf = human.parameters
radius = human.kernelRadius
for a in arange(1.0e-3, 9.0e-3, 1.0e-3):
aawf['aperture'] = a
print "Aperture %f kernel radius=%6.3f" % (a, radius(**aawf))
human = Human(verbose=True, generate=True)
test_kernel_radius(human)
#human.save()