-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
51 lines (44 loc) · 1.57 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
from geomloss import SamplesLoss
def batch_pairwise_dist(x, y):
# 32, 2500, 3
bs, num_points_x, points_dim = x.size()
_, num_points_y, _ = y.size()
# print(bs, num_points, points_dim)
xx = torch.bmm(x, x.transpose(2, 1))
yy = torch.bmm(y, y.transpose(2, 1))
zz = torch.bmm(x, y.transpose(2, 1))
diag_ind_x = torch.arange(0, num_points_x).type(torch.cuda.LongTensor)
diag_ind_y = torch.arange(0, num_points_y).type(torch.cuda.LongTensor)
rx = xx[:, diag_ind_x, diag_ind_x].unsqueeze(
1).expand_as(zz.transpose(2, 1))
ry = yy[:, diag_ind_y, diag_ind_y].unsqueeze(1).expand_as(zz)
P = (rx.transpose(2, 1) + ry - 2 * zz)
return P
def batch_NN_loss(x, y):
# bs, num_points, points_dim = x.size()
# dist1 = torch.sqrt(batch_pairwise_dist(x, y))
# values1, indices1 = dist1.min(dim=2)
#
# dist2 = torch.sqrt(batch_pairwise_dist(y, x))
# values2, indices2 = dist2.min(dim=2)
# a = torch.div(torch.sum(values1,1), num_points)
# b = torch.div(torch.sum(values2,1), num_points)
# sum = torch.div(torch.sum(a), bs) + torch.div(torch.sum(b), bs)
# return sum
P = batch_pairwise_dist(x, y)
mins, _ = torch.min(P, 1)
loss_1 = torch.mean(mins)
mins, _ = torch.min(P, 2)
loss_2 = torch.mean(mins)
return loss_1 + loss_2
def batch_EMD_loss(x, y):
bs, num_points_x, points_dim = x.size()
_, num_points_y, _ = y.size()
batch_EMD = 0
L = SamplesLoss()
for i in range(bs):
loss = L(x[i], y[i])
batch_EMD += loss
emd = batch_EMD/bs
return emd