Skip to content

Latest commit

 

History

History
30 lines (25 loc) · 763 Bytes

curriculum.md

File metadata and controls

30 lines (25 loc) · 763 Bytes

Curriculum

Module 0: Introduction

  • What is Machine Learning
  • Types of ML: Supervised, Unsupervised, Reinforcement
  • Types of ML problems: Regression, Classification

Module 1: Linear Models

  • Linear Regression
  • Logistic Regression

Module 2: Model Evaluation

  • Training and Validation
  • Model Evaluation Metrics - Accuracy, RMSE, ROC, AUC, Confusion Matrix, Precision, Recall, F1 Score
  • Overfitting and Bias-Variance trade-off
  • Regularization (L1/L2)
  • K-fold Cross Validation

Module 3: Tree-based Models

  • Decision Trees
  • Bagging and Boosting
  • Random Forest
  • Gradient Boosting Machines
  • Feature Importance

Module 4: Model Selection

  • Model Pipelines
  • Feature Engineering
  • Ensemble Models (Advanced)
  • Unbalanced Classes (Advanced)