Skip to content

Latest commit

 

History

History
573 lines (410 loc) · 15.2 KB

README.md

File metadata and controls

573 lines (410 loc) · 15.2 KB

OmniAI

LICENSE RubyGems GitHub Yard CircleCI

OmniAI provides a unified Ruby API for integrating with multiple AI providers, including Anthropic, DeepSeek, Google, Mistral, and OpenAI. It streamlines AI development by offering a consistent interface for features such as chat, text-to-speech, speech-to-text, and embeddings—ensuring seamless interoperability across platforms. Switching between providers is effortless, making any integration more flexible and reliable.

Examples

Example #1: Chat w/ Text

This example demonstrates using OmniAI with Anthropic to ask for a joke. The response is parsed and printed.

require 'omniai/anthropic'

client = OmniAI::Anthropic::Client.new

puts client.chat("Tell me a joke").text
Why don't scientists trust atoms? Because they make up everything!

Example #2: Chat w/ Prompt

This example demonstrates using OmniAI with Mistral to ask for the fastest animal. It includes a system and user message in the prompt. The response is streamed in real time.

require "omniai/mistral"

client = OmniAI::Mistral::Client.new

client.chat(stream: $stdout) do |prompt|
  prompt.system "Respond in both English and French."
  prompt.user "What is the fastest animal?"
end
**English**: The peregrine falcon is generally considered the fastest animal, reaching speeds of over 390 km/h.
**French**: Le faucon pèlerin est généralement considéré comme l'animal le plus rapide, atteignant des vitesses de plus de 390 km/h.

Example #3: Chat w/ Vision

This example demonstrates using OmniAI with OpenAI to prompt a “biologist” for an analysis of photos, identifying the animals within each one. A system and user message are provided, and the response is streamed in real time.

require "omniai/openai"

client = OmniAI::OpenAI::Client.new

CAT_URL = "https://images.unsplash.com/photo-1472491235688-bdc81a63246e?q=80&w=1024&h=1024&fit=crop&fm=jpg"
DOG_URL = "https://images.unsplash.com/photo-1517849845537-4d257902454a?q=80&w=1024&h=1024&fit=crop&fm=jpg"

client.chat(stream: $stdout) do |prompt|
  prompt.system("You are a helpful biologist with expertise in animals who responds with the Latin names.")
  prompt.user do |message|
    message.text("What animals are in the attached photos?")
    message.url(CAT_URL, "image/jpeg")
    message.url(DOG_URL, "image/jpeg")
  end
end
The first photo is of a cat, *Felis Catus*.
The second photo is of a dog, *Canis Familiaris*.

Example #4: Chat w/ Tools

This example demonstrates using OmniAI with Google to ask for the weather. A tool “Weather” is provided. The tool accepts a location and unit (Celsius or Fahrenheit) then calculates the weather. The LLM makes multiple tool-call requests and is automatically provided with a tool-call response prior to streaming in real-time the result.

require 'omniai/google'

client = OmniAI::Google::Client.new

class Weather < OmniAI::Tool
  description "Lookup the weather for a location"

  parameter :location, :string, description: "A location (e.g. 'Toronto, Canada')."
  parameter :unit, :string, enum: %w[Celsius Fahrenheit], description: "The unit of measurement."
  required %i[location]

  # @param location [String] required
  # @param unit [String] optional - "Celcius" or "Fahrenheit"
  # @return [String]
  def execute(location:, unit: "Celsius")
    puts "[weather] location=#{location} unit=#{unit}"
    "#{rand(20..50)}° #{unit} at #{location}"
  end
end

client.chat(stream: $stdout, tools: [Weather.new]) do |prompt|
  prompt.system "You are an expert in weather."
  prompt.user 'What is the weather in "London" in Celsius and "Madrid" in Fahrenheit?'
end
[weather] location=London unit=Celsius
[weather] location=Madrid unit=Fahrenheit
The weather is 24° Celsius in London and 42° Fahrenheit in Madrid.

Example #5: Chat w/ CLI

The OmniAI gem also ships with a CLI to simplify quick tests.

omniai chat "Who designed the Ruby programming language?"
The Ruby programming language was created by Yukihiro Matsumoto, often known as "Matz."
omniai chat --provider="google" --model="gemini-2.0-flash" "Who are you?"
I am a large language model, trained by Google.

Example #6: Text-to-Speech

This example demonstrates using OmniAI with OpenAI to convert text to speech and save it to a file.

require 'omniai/openai'

client = OmniAI::OpenAI::Client.new

File.open(File.join(__dir__, 'audio.wav'), 'wb') do |file|
  client.speak('Sally sells seashells by the seashore.', format: OmniAI::Speak::Format::WAV) do |chunk|
    file << chunk
  end
end

Example #7: Speech-to-Text

This example demonstrates using OmniAI with OpenAI to convert speech to text.

require 'omniai/openai'

client = OmniAI::OpenAI::Client.new

File.open(File.join(__dir__, 'audio.wav'), 'rb') do |file|
  transcription = client.transcribe(file)
  puts(transcription.text)
end

Example #8: Embeddings

This example demonstrates using OmniAI with Mistral to generate embeddings for a dataset. It defines a set of entries (e.g. "George is a teacher." or "Ringo is a doctor.") and then compares the embeddings generated from a query (e.g. "What does George do?" or "Who is a doctor?") to rank the entries by relevance.

require 'omniai/mistral'

CLIENT = OmniAI::Mistral::Client.new

Entry = Data.define(:text, :embedding) do
  def initialize(text:)
    super(text:, embedding: CLIENT.embed(text).embedding)
  end
end

ENTRIES = [
  Entry.new(text: 'John is a musician.'),
  Entry.new(text: 'Paul is a plumber.'),
  Entry.new(text: 'George is a teacher.'),
  Entry.new(text: 'Ringo is a doctor.'),
].freeze

def search(query)
  embedding = CLIENT.embed(query).embedding

  results = ENTRIES.sort_by do |data|
    Math.sqrt(data.embedding.zip(embedding).map { |a, b| (a - b)**2 }.reduce(:+))
  end

  puts "'#{query}': '#{results.first.text}'"
end

search('What does George do?')
search('Who is a doctor?')
search('Who do you call to fix a toilet?')
'What does George do?': 'George is a teacher.'
'Who is a doctor?': 'Ringo is a doctor.'
'Who do you call to fix a toilet?': 'Paul is a plumber.'

Installation

The main omniai gem is installed with:

gem install omniai

Specific provider gems are installed with:

gem install omniai-anthropic
gem install omniai-deepseek
gem install omniai-mistral
gem install omniai-google
gem install omniai-openai

Usage

OmniAI implements APIs for a number of popular clients by default. A client can be initialized using the specific gem (e.g. omniai-openai for OmniAI::OpenAI). Vendor specific docs can be found within each repo.

Client

require 'omniai/anthropic'

client = OmniAI::Anthropic::Client.new
require 'omniai/deepseek'

client = OmniAI::DeepSeek::Client.new
require 'omniai/google'

client = OmniAI::Google::Client.new
require 'omniai/mistral'

client = OmniAI::Mistral::Client.new
require 'omniai/openai'

client = OmniAI::OpenAI::Client.new

Usage with LocalAI

LocalAI support is offered through OmniAI::OpenAI:

Usage with LocalAI

Usage with Ollama

Ollama support is offered through OmniAI::OpenAI:

Usage with Ollama

Logging

Logging the request / response is configurable by passing a logger into any client:

require 'omniai/openai'
require 'logger'

logger = Logger.new(STDOUT)
client = OmniAI::OpenAI::Client.new(logger:)
[INFO]: POST https://...
[INFO]: 200 OK
...

Timeouts

Timeouts are configurable by passing a timeout an integer duration for the request / response of any APIs using:

require 'omniai/openai'
require 'logger'

logger = Logger.new(STDOUT)
client = OmniAI::OpenAI::Client.new(timeout: 8) # i.e. 8 seconds

Timeouts are also configurable by passing a timeout hash with timeout / read / write / keys using:

require 'omniai/openai'
require 'logger'

logger = Logger.new(STDOUT)
client = OmniAI::OpenAI::Client.new(timeout: {
  read: 2, # i.e. 2 seconds
  write: 3, # i.e. 3 seconds
  connect: 4, # i.e. 4 seconds
})

Chat

Clients that support chat (e.g. Anthropic w/ "Claude", Google w/ "Gemini", Mistral w/ "LeChat", OpenAI w/ "ChatGPT", etc) generate completions using the following calls:

Completions using a Simple Prompt

Generating a completion is as simple as sending in the text:

completion = client.chat('Tell me a joke.')
completion.text # 'Why don't scientists trust atoms? They make up everything!'

Completions using a Complex Prompt

More complex completions are generated using a block w/ various system / user messages:

completion = client.chat do |prompt|
  prompt.system 'You are a helpful assistant with an expertise in animals.'
  prompt.user do |message|
    message.text 'What animals are in the attached photos?'
    message.url('https://.../cat.jpeg', "image/jpeg")
    message.url('https://.../dog.jpeg', "image/jpeg")
    message.file('./hamster.jpeg', "image/jpeg")
  end
end
completion.text  # 'They are photos of a cat, a cat, and a hamster.'

Completions using Streaming via Proc

A real-time stream of messages can be generated by passing in a proc:

stream = proc do |chunk|
  print(chunk.text) # '...'
end
client.chat('Tell me a joke.', stream:)

Completion using Streaming via IO

The above code can also be supplied any IO (e.g. File, $stdout, $stdin, etc):

client.chat('Tell me a story', stream: $stdout)

Completion with Tools

A chat can also be initialized with tools:

tool = OmniAI::Tool.new(
  proc { |location:, unit: 'Celsius'| "#{rand(20..50)}° #{unit} in #{location}" },
  name: 'Weather',
  description: 'Lookup the weather in a location',
  parameters: OmniAI::Tool::Parameters.new(
    properties: {
      location: OmniAI::Tool::Property.string(description: 'e.g. Toronto'),
      unit: OmniAI::Tool::Property.string(enum: %w[Celsius Fahrenheit]),
    },
    required: %i[location]
  )
)
client.chat('What is the weather in "London" in Celsius and "Paris" in Fahrenheit?', tools: [tool])

Transcribe

Clients that support transcribe (e.g. OpenAI w/ "Whisper") convert recordings to text via the following calls:

Transcriptions with Path

transcription = client.transcribe("example.ogg")
transcription.text # '...'

Transcriptions with Files

File.open("example.ogg", "rb") do |file|
  transcription = client.transcribe(file)
  transcription.text # '...'
end

Speak

Clients that support speak (e.g. OpenAI w/ "Whisper") convert text to recordings via the following calls:

Speech with Stream

File.open('example.ogg', 'wb') do |file|
  client.speak('The quick brown fox jumps over a lazy dog.', voice: 'HAL') do |chunk|
    file << chunk
  end
end

Speech with File

tempfile = client.speak('The quick brown fox jumps over a lazy dog.', voice: 'HAL')
tempfile.close
tempfile.unlink

Embeddings

Clients that support generating embeddings (e.g. OpenAI, Mistral, etc.) convert text to embeddings via the following:

response = client.embed('The quick brown fox jumps over a lazy dog')
response.usage # <OmniAI::Embed::Usage prompt_tokens=5 total_tokens=5>
response.embedding # [0.1, 0.2, ...] >

Batches of text can also be converted to embeddings via the following:

response = client.embed([
  '',
  '',
])
response.usage # <OmniAI::Embed::Usage prompt_tokens=5 total_tokens=5>
response.embeddings.each do |embedding|
  embedding # [0.1, 0.2, ...]
end

CLI

OmniAI packages a basic command line interface (CLI) to allow for exploration of various APIs. A detailed CLI documentation can be found via help:

omniai --help

Chat

w/ a Prompt

omniai chat "What is the coldest place on earth?"
The coldest place on earth is Antarctica.

w/o a Prompt

omniai chat --provider="openai" --model="gpt-4" --temperature="0.5"
Type 'exit' or 'quit' to abort.
# What is the warmet place on earth?
The warmest place on earth is Africa.

Embed

w/ input

omniai embed "The quick brown fox jumps over a lazy dog."
0.0
...

w/o input

omniai embed --provider="openai" --model="text-embedding-ada-002"
Type 'exit' or 'quit' to abort.
# Whe quick brown fox jumps over a lazy dog.
0.0
...

MCP

MCP is an open protocol designed to standardize giving context to LLMs. The OmniAI implementation supports building an MCP server that operates via the stdio transport.

main.rb

class Weather < OmniAI::Tool
  description "Lookup the weather for a location"

  parameter :location, :string, description: "A location (e.g. 'London' or 'Madrid')."
  required %i[location]

  # @param location [String] required
  # @return [String]
  def execute(location:)
    case location
    when 'London' then 'Rainy'
    when 'Madrid' then 'Sunny'
    end
  end
end

transport = OmniAI::MCP::Transport::Stdio.new
mcp = OmniAI::MCP::Server.new(tools: [Weather.new])
mcp.run(transport:)
ruby main.rb
{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "tools/call",
  "params": { "name": "echo", "arguments": { "message": "Hello, world!" } }
}