|
| 1 | +import sys |
| 2 | +sys.path.extend([".", ".."]) |
| 3 | +from sys import argv |
| 4 | +import argparse |
| 5 | +import csv |
| 6 | +from pymatgen import Element |
| 7 | + |
| 8 | +from skipatom import SkipAtomModel, SkipAtomInducedModel |
| 9 | + |
| 10 | +""" |
| 11 | +e.g. |
| 12 | +--model ../data/mp_2020_10_09.dim200.model |
| 13 | +--data ../data/mp_2020_10_09.training.data |
| 14 | +--induced --min-count 2e7 --top-n 5 |
| 15 | +--out ../data/skipatom_20201009_induced.csv |
| 16 | +""" |
| 17 | +if __name__ == '__main__': |
| 18 | + parser = argparse.ArgumentParser( |
| 19 | + description="Create a CSV file with the SkipAtom vectors." |
| 20 | + ) |
| 21 | + parser.add_argument("--model", nargs="?", required=True, type=str, |
| 22 | + help="path to SkipAtom .model file") |
| 23 | + parser.add_argument("--data", nargs="?", required=True, type=str, |
| 24 | + help="path to SkipAtom .training.data file") |
| 25 | + parser.add_argument("--out", nargs="?", required=True, type=str, |
| 26 | + help="path to the output file; a .csv extension should be used") |
| 27 | + parser.add_argument("--induced", action="store_true", |
| 28 | + help="whether to use induced SkipAtom vectors") |
| 29 | + parser.add_argument("--min-count", required=("induced" in argv), type=lambda x: int(float(x)), |
| 30 | + help="the min. count to use if induced vectors are specified") |
| 31 | + parser.add_argument("--top-n", required=("induced" in argv), type=int, |
| 32 | + help="the top N to use if induced vectors are specified") |
| 33 | + |
| 34 | + args = parser.parse_args() |
| 35 | + |
| 36 | + if args.induced: |
| 37 | + model = SkipAtomInducedModel.load(args.model, args.data, min_count=args.min_count, top_n=args.top_n) |
| 38 | + else: |
| 39 | + model = SkipAtomModel.load(args.model, args.data) |
| 40 | + |
| 41 | + sorted_elems = sorted([(e, Element(e).number) for e in model.dictionary], key=lambda v: v[1]) |
| 42 | + |
| 43 | + dim = len(model.vectors[0]) |
| 44 | + |
| 45 | + with open(args.out, "wt") as f: |
| 46 | + writer = csv.writer(f) |
| 47 | + header = ["element"] |
| 48 | + header.extend([str(i) for i in range(dim)]) |
| 49 | + writer.writerow(header) |
| 50 | + for elem, _ in sorted_elems: |
| 51 | + vec = model.vectors[model.dictionary[elem]] |
| 52 | + row = [elem] |
| 53 | + row.extend([str(v) for v in vec]) |
| 54 | + writer.writerow(row) |
0 commit comments