-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocesses.cpp
203 lines (151 loc) · 5.13 KB
/
processes.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#include "include/CImg.h"
#include <iostream>
#include <vector>
#include "include/processes.h"
using namespace std;
using namespace cimg_library;
// static declaration for struct
static tImageInfo processInfo;
// init function for function Information
void imageInit(string& filePath, eProcess effect)
{
processInfo.img_path = filePath;
processInfo.processType = effect;
processInfo.kernel_size = 3;
//assigning constructors image variabile to the image path inputted
processInfo.workingImg.assign( filePath.c_str() );
//passing a copy of this struct to the GPU code so it can do the same processing...
imageInitGPU(processInfo);
//cout << processInfo.img_path << endl;
//cout << processInfo.processType << endl;
}
// simple function to disp image
void dispImage()
{
//calling CImg display using curr processes image object
CImgDisplay display(processInfo.workingImg, "User Image");
//waiting for user to close display
while(!display.is_closed()){
display.wait();
}
}
//General function for image convolution
CImg<unsigned char> applyKernelCPU(const vector<vector<float>>& kernel, const CImg<unsigned char>& image)
{
//getting values of width and height
int width = processInfo.workingImg.width();
int height = processInfo.workingImg.height();
CImg<unsigned char> newImage(width, height, 1, 3, 0);
for(int y = 1; y < height-1; y++)
{
for (int x = 1; x < width - 1; x++)
{
newImage(x, y, 0, 0) = convolveCalc(x, y, 0, image, kernel);
newImage(x, y, 0, 1) = convolveCalc(x, y, 1, image, kernel);
newImage(x, y, 0, 2) = convolveCalc(x, y, 2, image, kernel);
}
}
//newImage.save("C:/Vs2022/ImageProcessing/ImageProcessing/ImageProcessing/images/newImage.jpg");
return newImage;
}
//helper function for making convolution calculations
unsigned char convolveCalc(int x, int y, int channel, const CImg<unsigned char>& image, const vector<vector<float>>& kernel)
{
int kernelSize = kernel.size();
int kCenter = kernelSize / 2;
double value = 0;
for (int ky = 0; ky < kernelSize; ky++)
{
for (int kx = 0; kx < kernelSize; kx++)
{
int px = x + (kx - kCenter);
int py = y + (ky - kCenter);
value += kernel[ky][kx] * image(px, py, 0, channel);
}
}
return static_cast<unsigned char>(std::min(std::max(int(value), 0), 255));
}
void sharpen( CImg<unsigned char> (*applyKernel)(const vector<vector<float>>& kernel, const CImg<unsigned char>& image) )
{
//kernel for getting detail image
const vector<vector<float>> lapKernel = {
{-1, -1, -1},
{-1, 8, -1},
{-1, -1, -1}
};
CImg<unsigned char> detailImg = applyKernel(lapKernel, processInfo.workingImg);
detailImg.save("C:/Vs2022/ImageProcessing/ImageProcessing/ImageProcessing/images/detailImage.jpg");
int height = processInfo.workingImg.height();
int width = processInfo.workingImg.width();
//defining new result image
CImg<unsigned char> sharpenedImg(width, height, 1, 3, 0);
//summing the two detail image and original image for sharppning...
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
//need to do calc for each RGB channel of the image
for (int channel = 0; channel < 3; channel++)
{
int originalValue = processInfo.workingImg(x, y, 0, channel);
int detailValue = detailImg(x, y, 0, channel);
int sharpenedValue = originalValue + detailValue;
// Clamp the result to the range [0, 255]
sharpenedImg(x, y, 0, channel) = static_cast<unsigned char>(std::min(std::max(sharpenedValue, 0), 255));
}
}
}
//saving final image
sharpenedImg.save("C:/Vs2022/ImageProcessing/ImageProcessing/ImageProcessing/images/sharpenedImage.jpg");
}
void boxBlur(CImg<unsigned char>(*applyKernel)(const vector<vector<float>>& kernel, const CImg<unsigned char>& image))
{
//kernel for getting detail image
const vector<vector<float>> boxBlurKernel = {
{0.111, 0.111, 0.111},
{0.111, 0.111, 0.111},
{0.111, 0.111, 0.111}
};
CImg<unsigned char> blurredImg = applyKernel(boxBlurKernel, processInfo.workingImg);
blurredImg.save("C:/Vs2022/ImageProcessing/ImageProcessing/ImageProcessing/images/blurredImage.jpg");
}
//getting information struct
tImageInfo* getImageInfo()
{
return &processInfo;
}
// process getters and setters
eProcess getProcess()
{
return processInfo.processType;
}
void setProcess(eProcess process)
{
processInfo.processType = process;
}
// file path and name getters
std::string getDir()
{
return processInfo.img_path;
}
int getKernel()
{
return processInfo.kernel_size;
}
void setKernel(int n)
{
processInfo.kernel_size = n;
}
std::string getProcessName()
{
if (processInfo.processType == eNone){
return "None";
}
else if (processInfo.processType == eBoxBlur){
return "Box Blur";
}
else if (processInfo.processType == eSharpen){
return "Sharpening";
}
return "ERROR";
}