-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathplot.py
166 lines (127 loc) · 4.05 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import h5py
import subprocess
import argparse
import train
import time
import os
import sys
import glob
import re
import matplotlib.pyplot as plt
import numpy as np
parser = argparse.ArgumentParser(description='')
parser.add_argument("-folder",default='./opt/tmp/')
parser.add_argument("-per",default=30,type = int)
parser.add_argument("-save",action='store_false', help="save pic")
parser.add_argument("-show",action='store_false', help="save pic")
parser.add_argument("-exact",type=float,default=None,help="obs_exact")
args = parser.parse_args()
rootFolder = args.folder
if rootFolder[-1] != '/':
rootFolder += '/'
with h5py.File(rootFolder+"parameters.hdf5","r") as f:
epochs = int(np.array(f["epochs"]))
batch = int(np.array(f["batch"]))
savePeriod = int(np.array(f["savePeriod"]))
plt.ion()
fig1 = plt.figure()
ax1 = fig1.add_subplot(111)
l1, = ax1.plot([], [],'o', alpha=0.5, label='direct generated')
l2, = ax1.plot([], [],'s', alpha=0.5, label='latent space hmc')
l21, = ax1.plot([], [],'*', alpha=0.5, label='physical space hmc')
plt.xlabel('$x_1$')
plt.ylabel('$x_2$')
plt.xlim([-10, 10])
plt.ylim([-10, 10])
plt.legend(loc='upper left')
fig1.canvas.draw()
fig2 = plt.figure(figsize=(8,6))
ax2 = fig2.add_subplot(311)
l3, = ax2.plot([], [], label='loss')
ax2.set_xlim([0, epochs])
ax2.legend()
ax4 = fig2.add_subplot(312)
l5, = ax4.plot([], [], 'o', label='latent space hmc accratio')
l6, = ax4.plot([], [], 'o', label='physical space hmc accratio')
ax4.set_xlim([0, epochs])
ax4.legend()
ax5 = fig2.add_subplot(313)
fig2.canvas.draw()
epoch = 0
epoch_ = 0
#tolerant0 = 1000
while(True):
while(epoch_ == epoch):
time.sleep(args.per/2)
try:
name = sorted(glob.iglob(rootFolder+"savings/*Saving*.saving"),key = os.path.getctime)[-2]
except:
time.sleep(args.per/2)
'''
tolerant0 -= 1
if tolerant0 <=0:
print("out of tolerant0")
sys.exit(1)
'''
continue
part = name.split('epoch')
prefix = part[0].replace("savings","records").replace("Saving","Record")
epoch_ = int(re.findall(r'\d+',part[1])[0])
if epoch_ == epochs-2*savePeriod and epoch == epoch_:
epoch_ = epochs-savePeriod
epoch = epoch_
print("at epoch: "+str(epoch))
name = prefix+"epoch"+str(epoch)+".hdf5"
with h5py.File(name,"r") as f:
LOSS = np.array(f["LOSS"])
XOBS = np.array(f["XOBS"])
ZOBS = np.array(f["ZOBS"])
XACC = np.array(f["XACC"])
ZACC = np.array(f["ZACC"])
name = name.replace("Record","HMCresult")
with h5py.File(name,"r") as f:
XZ = np.array(f["XZ"])
X = np.array(f["X"])
Y = np.array(f["Y"])
X = X.reshape(batch,-1)
l1.set_xdata(X[:,0])
l1.set_ydata(X[:,1])
XZ=XZ.reshape(batch,-1)
l2.set_xdata(XZ[:,0])
l2.set_ydata(XZ[:,1])
Y = Y.reshape(batch,-1)
l21.set_xdata(Y[:,0])
l21.set_ydata(Y[:,1])
ax1.set_title('epoch=%g'%(epoch))
ax1.relim()
ax1.autoscale_view()
fig1.canvas.draw()
l3.set_xdata(range(LOSS.shape[0]))
l3.set_ydata(LOSS)
l5.set_xdata(np.arange(ZACC.shape[0])*savePeriod)
l5.set_ydata(ZACC)
l6.set_xdata(np.arange(XACC.shape[0])*savePeriod)
l6.set_ydata(XACC)
ax5.cla()
ax5.errorbar(np.arange(ZOBS.shape[0])*savePeriod, ZOBS[:,0], yerr=ZOBS[:, 1], fmt='o', capsize=8)
ax5.errorbar(np.arange(XOBS.shape[0])*savePeriod, XOBS[:,0], yerr=XOBS[:, 1], fmt='s', capsize=8)
if (args.exact is not None):
plt.axhline(args.exact, color='r', lw=2)
ax5.set_xlim([0, epochs])
plt.xlabel('epochs')
ax2.relim()
ax2.autoscale_view()
ax4.relim()
ax4.autoscale_view()
ax5.relim()
ax5.autoscale_view()
fig2.canvas.draw()
plt.pause(0.001)
if args.save:
fig1.savefig(rootFolder+'pic/epoch%g.pdf'%(epoch))
fig2.savefig(rootFolder+'pic/Loss.pdf')
if args.show:
plt.show()
if epoch == epochs - savePeriod:
print("finish with all epochs ploted")
sys.exit(0)