Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Brgemm register tiling support for tensor type #1016

Merged
merged 2 commits into from
Feb 20, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 1 addition & 3 deletions lib/TPP/Transforms/BrgemmLinalgTiling.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -48,8 +48,6 @@ struct LinalgOpTiling : OpRewritePattern<BrgemmOp> {

LogicalResult matchAndRewrite(BrgemmOp brgemmOp,
PatternRewriter &rewriter) const override {
if (!brgemmOp.hasPureBufferSemantics())
return failure();

// Check whether the tile sizes are valid
if (options.registerTileShape.size() != 3)
Expand Down Expand Up @@ -177,7 +175,7 @@ struct LinalgOpTiling : OpRewritePattern<BrgemmOp> {
if (failed(tiledOp)) {
return failure();
}
rewriter.replaceOp(brgemmOp, tiledOp->op->getResults());
rewriter.replaceOp(brgemmOp, tiledOp->tensorResults);

return success();
}
Expand Down
112 changes: 104 additions & 8 deletions test/Passes/pass-tile-brgemm-linalg-matmul.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,34 @@ module {

// -----

module {
func.func @brgemm_tensor_type_tiling(%arg0: tensor<128x256x512xf32>, %arg1: tensor<128x512x256xf32>, %arg2: tensor<256x256xf32>) -> tensor<256x256xf32> {
%0 = linalg.batch_reduce_matmul ins(%arg0, %arg1 : tensor<128x256x512xf32>, tensor<128x512x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
return %0 : tensor<256x256xf32>
}
}


// CONF1-LABEL: func.func @brgemm_tensor_type_tiling
// CONF1-DAG: %[[C0:.+]] = arith.constant 0 : index
// CONF1-DAG: %[[C256:.+]] = arith.constant 256 : index
// CONF1-DAG: %[[C8:.+]] = arith.constant 8 : index
// CONF1-DAG: %[[C32:.+]] = arith.constant 32 : index
// CONF1-DAG: %[[C128:.+]] = arith.constant 128 : index
// CONF1-DAG: %[[C1:.+]] = arith.constant 1 : index
// CONF1-DAG: %[[C512:.+]] = arith.constant 512 : index
// CONF1: %0 = scf.for %[[I:.+]] = %[[C0]] to %[[C256]] step %[[C8]] iter_args(%arg4 = %arg2) -> (tensor<256x256xf32>) {
// CONF1-NEXT: %1 = scf.for %[[J:.+]] = %[[C0]] to %[[C256]] step %[[C32]] iter_args(%arg6 = %arg4) -> (tensor<256x256xf32>) {
// CONF1-NEXT: %2 = scf.for %[[K:.+]] = %[[C0]] to %[[C128]] step %[[C1]] iter_args(%arg8 = %arg6) -> (tensor<256x256xf32>) {
// CONF1-NEXT: %3 = scf.for %[[L:.+]] = %[[C0]] to %[[C512]] step %[[C1]] iter_args(%arg10 = %arg8) -> (tensor<256x256xf32>) {
// CONF1-NEXT: %extracted_slice = tensor.extract_slice %arg0[%[[K]], %[[I]], %[[L]]] [1, 8, 1] [1, 1, 1] : tensor<128x256x512xf32> to tensor<1x8x1xf32>
// CONF1-NEXT: %extracted_slice_0 = tensor.extract_slice %arg1[%[[K]], %[[L]], %[[J]]] [1, 1, 32] [1, 1, 1] : tensor<128x512x256xf32> to tensor<1x1x32xf32>
// CONF1-NEXT: %extracted_slice_1 = tensor.extract_slice %arg10[%[[I]], %[[J]]] [8, 32] [1, 1] : tensor<256x256xf32> to tensor<8x32xf32>
// CONF1-NEXT: %4 = linalg.batch_reduce_matmul ins(%extracted_slice, %extracted_slice_0 : tensor<1x8x1xf32>, tensor<1x1x32xf32>) outs(%extracted_slice_1 : tensor<8x32xf32>) -> tensor<8x32xf32>
// CONF1-NEXT: %inserted_slice = tensor.insert_slice %4 into %arg10[%[[I]], %[[J]]] [8, 32] [1, 1] : tensor<8x32xf32> into tensor<256x256xf32>

// -----

#map = affine_map<(d0, d1, d2, d3, d4) -> (d0, d2, d4, d1)>
#map1 = affine_map<(d0, d1, d2, d3, d4) -> (d0, d4, d3, d1)>
#map2 = affine_map<(d0, d1, d2, d3, d4) -> (d2, d3)>
Expand Down Expand Up @@ -124,17 +152,48 @@ module {

// -----


#map = affine_map<(d0, d1, d2, d3, d4) -> (d0, d2, d4, d1)>
#map1 = affine_map<(d0, d1, d2, d3, d4) -> (d0, d4, d3, d1)>
#map2 = affine_map<(d0, d1, d2, d3, d4) -> (d2, d3)>
module {
func.func @brgemm_tensor_type_no_tiling(%arg0: tensor<128x256x512xf32>, %arg1: tensor<128x512x256xf32>, %arg2: tensor<256x256xf32>) -> tensor<256x256xf32> {
%0 = linalg.batch_reduce_matmul ins(%arg0, %arg1 : tensor<128x256x512xf32>, tensor<128x512x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
return %0 : tensor<256x256xf32>
func.func @gemm_64tiles_do_tiling_bf16_tensor(%arg0: tensor<4x16x64x64xbf16>) -> tensor<4x16x64x64xbf16> {
%cst = arith.constant dense<1.000000e+00> : tensor<16x32x64x2xbf16>
%cst_0 = arith.constant 0.000000e+00 : bf16
%0 = bufferization.alloc_tensor() : tensor<4x16x64x64xbf16>
%expanded = tensor.expand_shape %arg0 [[0], [1], [2], [3, 4]] output_shape [4, 16, 64, 32, 2] : tensor<4x16x64x64xbf16> into tensor<4x16x64x32x2xbf16>
%1 = scf.forall (%arg1, %arg2) in (4, 16) shared_outs(%arg3 = %0) -> (tensor<4x16x64x64xbf16>) {
%extracted_slice = tensor.extract_slice %arg3[%arg1, %arg2, 0, 0] [1, 1, 64, 64] [1, 1, 1, 1] : tensor<4x16x64x64xbf16> to tensor<64x64xbf16>
%2 = linalg.fill ins(%cst_0 : bf16) outs(%extracted_slice : tensor<64x64xbf16>) -> tensor<64x64xbf16>
%extracted_slice_1 = tensor.extract_slice %expanded[%arg1, 0, 0, 0, 0] [1, 16, 64, 32, 2] [1, 1, 1, 1, 1] : tensor<4x16x64x32x2xbf16> to tensor<16x64x32x2xbf16>
%3 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["reduction", "reduction", "parallel", "parallel", "reduction"]} ins(%extracted_slice_1, %cst : tensor<16x64x32x2xbf16>, tensor<16x32x64x2xbf16>) outs(%2 : tensor<64x64xbf16>) {
^bb0(%in: bf16, %in_2: bf16, %out: bf16):
%4 = arith.mulf %in, %in_2 : bf16
%5 = arith.addf %out, %4 : bf16
linalg.yield %5 : bf16
} -> tensor<64x64xbf16>
scf.forall.in_parallel {
tensor.parallel_insert_slice %3 into %arg3[%arg1, %arg2, 0, 0] [1, 1, 64, 64] [1, 1, 1, 1] : tensor<64x64xbf16> into tensor<4x16x64x64xbf16>
}
}
return %1 : tensor<4x16x64x64xbf16>
}
}


// CONF1-LABEL: func.func @brgemm_tensor_type_no_tiling
// CONF1-NOT: scf.for
// CONF2-NOT: scf.for
// CONF2-LABEL: func.func @gemm_64tiles_do_tiling_bf16_tensor
// CONF2-DAG: %[[C1:.+]] = arith.constant 1 : index
// CONF2-DAG: %[[C32:.+]] = arith.constant 32 : index
// CONF2-DAG: %[[C64:.+]] = arith.constant 64 : index
// CONF2-DAG: %[[C16:.+]] = arith.constant 16 : index
// CONF2-DAG: %[[C0:.+]] = arith.constant 0 : index
// CONF2: %3 = scf.for %[[I:.+]] = %[[C0]] to %[[C64]] step %[[C32]] iter_args(%arg5 = %2) -> (tensor<64x64xbf16>)
// CONF2-NEXT: %4 = scf.for %[[J:.+]] = %[[C0]] to %[[C64]] step %[[C32]] iter_args(%arg7 = %arg5) -> (tensor<64x64xbf16>)
// CONF2-NEXT: %5 = scf.for %[[K:.+]] = %[[C0]] to %[[C16]] step %[[C1]] iter_args(%arg9 = %arg7) -> (tensor<64x64xbf16>)
// CONF2-NEXT: %6 = scf.for %[[L:.+]] = %[[C0]] to %[[C32]] step %[[C16]] iter_args(%arg11 = %arg9) -> (tensor<64x64xbf16>)
// CONF2-NEXT: %extracted_slice_2 = tensor.extract_slice %extracted_slice_1[%[[K]], %[[I]], %[[L]], 0] [1, 32, 16, 2] [1, 1, 1, 1] : tensor<16x64x32x2xbf16> to tensor<1x32x16x2xbf16>
// CONF2-NEXT: %extracted_slice_3 = tensor.extract_slice %cst[%[[K]], %[[L]], %[[J]], 0] [1, 16, 32, 2] [1, 1, 1, 1] : tensor<16x32x64x2xbf16> to tensor<1x16x32x2xbf16>
// CONF2-NEXT: %extracted_slice_4 = tensor.extract_slice %arg11[%[[I]], %[[J]]] [32, 32] [1, 1] : tensor<64x64xbf16> to tensor<32x32xbf16>
// CONF2-NEXT: %7 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["reduction", "reduction", "parallel", "parallel", "reduction"]} ins(%extracted_slice_2, %extracted_slice_3 : tensor<1x32x16x2xbf16>, tensor<1x16x32x2xbf16>) outs(%extracted_slice_4 : tensor<32x32xbf16>)

// -----

Expand All @@ -146,7 +205,44 @@ module {
}
}


// CONF1-LABEL: func.func @matmul_no_tiling
// CONF1-NOT: scf.for
// CONF2-LABEL: func.func @matmul_no_tiling
// CONF2-NOT: scf.for

// -----

func.func @batch_matmul_no_tiling(%arg0: tensor<512x32x64xf32>, %arg1: tensor<512x64x32xf32>) -> tensor<512x32x32xf32> {
%0 = tensor.empty() : tensor<512x32x32xf32>
%1 = linalg.batch_matmul ins(%arg0, %arg1 : tensor<512x32x64xf32>, tensor<512x64x32xf32>)
outs(%0 : tensor<512x32x32xf32>) -> tensor<512x32x32xf32>
return %1 : tensor<512x32x32xf32>
}

// CONF1-LABEL: func.func @batch_matmul_no_tiling
// CONF1-NOT: scf.for
// CONF2-LABEL: func.func @batch_matmul_no_tiling
// CONF2-NOT: scf.for

// -----

#map = affine_map<(d0, d1) -> (d0, d1)>
func.func @generic_matmul_no_tiling(%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>) -> tensor<128x128xf32> {
%0 = linalg.matmul ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
%c0 = arith.constant 0.0 : f32
%1 = linalg.generic {indexing_maps = [#map], iterator_types = ["parallel", "parallel"]} outs(%0: tensor<128x128xf32>) {
^bb0(%out: f32):
%2 = arith.maximumf %out, %c0 : f32
linalg.yield %2 : f32
} -> tensor<128x128xf32>
return %1 : tensor<128x128xf32>
}

// CONF1-LABEL: func.func @generic_matmul_no_tiling
// CONF1-NOT: scf.for
// CONF2-LABEL: func.func @generic_matmul_no_tiling
// CONF2-NOT: scf.for

// -----