-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrypto_ETL.py
128 lines (100 loc) · 4.61 KB
/
crypto_ETL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import json
from datetime import date
import numpy as np
import pandas as pd
def flat_sand_data(file_name):
"""Flatten JSON object to derive transaction level data."""
with open(file_name,'r') as json_file:
json_data = json.load(json_file)
df = pd.json_normalize(
json_data,
record_path=["holders","transactions"],
sep="_",
meta=[
['holders','address'],
['holders','balance'],
['holders','share'],
['holders','tag']
],
errors='ignore'
)
df = df.rename(
columns={
'type': 'tx_type',
'from': 'address_from',
'to': 'address_to',
'value': 'abs_value'
}
)
df = df.reindex(
columns = [
'holders_address',
'holders_balance',
'holders_share',
'holders_tag',
'transactionHash',
'timestamp',
'tx_type',
'address_from',
'address_to',
'abs_value',
'USD_price_at_timestamp',
]
)
return df
def make_readible(df):
""" df_tx takes a copy of df_no_tag and makes for better readability. EXCLUDES tagged wallets."""
readible_df = df.copy()
readible_df['uniq_transID'] = readible_df[['holders_address','timestamp']].apply(lambda x: '_'.join(x.values.astype(str)), axis=1)
readible_df['date_time'] = pd.to_datetime(readible_df['timestamp'], unit='s') # Convert from UNIX timestamp.
readible_df['value'] = np.where(readible_df['holders_address']!=readible_df['address_from'], -readible_df['abs_value'],
readible_df['abs_value']) # Positive values are sales, Negative values indicate purchase.
readible_df['value_in_USD'] = readible_df['value'] * readible_df['USD_price_at_timestamp'] # Cash Flow data in USD.
return readible_df
def aggregate_wallet(df1, df2):
""" wallet_level_data (df): this should provide a wallet-level dataframe to house investment return data.
We are choosing df_flat which still has the UNIX timestamp."""
df_merge = pd.DataFrame(
df1[
["holders_address",
"timestamp",
]
]
.groupby(["holders_address"])
.min(numeric_only=True)
)
df_merge.insert(loc=0, column='row_num', value=np.arange(len(df_merge)))
df_merge['row_num'] = df_merge.reset_index(inplace=True)
df_merge.drop(['row_num'], axis=1, inplace=True)
df_merge['uniq_transID'] = df_merge[['holders_address','timestamp']].apply(lambda row: '_'.join(row.values.astype(str)), axis=1)
df_merge = df_merge.rename(columns={'transactionHash': 'initial_tx_hash',})
df_merge = pd.merge(df_merge, df2, on="uniq_transID",how='inner')
df_merge['holding_period_days'] = (pd.Timestamp(date.today()) - df_merge['date_time']).astype('timedelta64[D]')
df_merge.drop(['holders_address_y','timestamp_y','timestamp_x'], axis=1, inplace=True)
df_merge.rename(
columns={
'holders_address_x': 'holders_address',
'holders_balance_x': 'holders_balance',
'abs_value': 'inital_abs_value',
'date_time': 'initial_dt',
'value': 'initial_value',
'value_in_USD': 'initial_value_in_USD'
},
inplace = True
)
df_merge = df_merge[['holders_address','USD_price_at_timestamp','inital_abs_value','initial_dt','initial_value','initial_value_in_USD','holding_period_days']]
return df_merge
def collapse_initial(df):
"""Takes an inital dataframe (df) and collapses all initial transactions for wallet holders that have multiple initial transactions."""
new_df = df.groupby('holders_address').first()
holders_count = dict(df['holders_address'].value_counts())
multi_list = [x for x in holders_count if holders_count[x]>1]
# Aggregates all instances of initial_abs_value, initial_value, initial_value_in USD.
for wallet in multi_list:
multi_genesis = df[df['holders_address'] == wallet]
multi_genesis = multi_genesis[['inital_abs_value','initial_value','initial_value_in_USD']].sum()
new_df.at[wallet,'inital_abs_value'] = multi_genesis[0]
new_df.at[wallet,'initial_value'] = multi_genesis[1]
new_df.at[wallet,'initial_value_in_USD'] = multi_genesis[2]
new_df.reset_index()
return new_df