-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrvc_processing.py
429 lines (387 loc) · 15.8 KB
/
rvc_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import sys
import time
import torch
import threading
import librosa
import numpy as np
import torch.nn.functional as F
import torchaudio.transforms as tat
import rvc.tools.rvc_for_realtime as rvc_for_realtime
from settings import RVCSettings, VCSettings
from rvc.configs.config import Config
from rvc.tools.torchgate import TorchGate
from rvc.infer.modules.vc.modules import VC
from multiprocessing import Queue
from collections import deque
class VCWrapper:
def __init__(self, model_path = None, index_path = None):
self.config = Config()
self.pconfig = VCSettings()
self.vc = VC(self.config)
self.vc.get_vc(self.pconfig.model_path if model_path is None else model_path)
def vc_process(
self,
input_path,
orig_sr=None,
f0_up_key=None,
f0_method=None,
file_index=None,
file_index2=None,
index_rate=None,
filter_radius=None,
resample_sr=None,
rms_mix_rate=None,
protect=None):
info, (tgt_sr, audio_opt) = self.vc.vc_single(
sid=0,
input_audio_path=input_path,
orig_sr=self.pconfig.orig_sr if orig_sr is None else orig_sr,
f0_up_key=self.pconfig.f0_up_key if f0_up_key is None else f0_up_key,
f0_file=None,
f0_method=self.pconfig.f0method if f0_method is None else f0_method,
file_index=self.pconfig.file_index if file_index is None else file_index,
file_index2=self.pconfig.file_index2 if file_index2 is None else file_index2,
index_rate=self.pconfig.index_rate if index_rate is None else index_rate,
filter_radius=self.pconfig.filter_radius if filter_radius is None else filter_radius,
resample_sr=self.pconfig.resample_sr if resample_sr is None else resample_sr,
rms_mix_rate=self.pconfig.rms_mix_rate if rms_mix_rate is None else rms_mix_rate,
protect=self.pconfig.protect if protect is None else protect)
print(info)
return audio_opt, tgt_sr
class RVCWrapper:
def __init__(self):
self.config = Config()
self.pconfig = RVCSettings()
self.delay_time = 0
self.latency = .5
self.stop = False
self.hostapis = None
#RVC
self.inp_q = None
self.opt_q = None
#Pre+Post Processing
self.tg = None
self.resampler = None
self.resampler2 = None
#Block Size
self.zc = None
self.block_frame = None
self.block_frame_16k = None
self.crossfade_frame = None
self.sola_buffer_frame = None
self.sola_search_frame = None
self.extra_frame = None
#Buffers
self.rms_buffer = None
self.input_wav = None
self.input_wav_res = None
self.input_wav_denoise = None
self.nr_buffer = None
self.fade_in_window = None
self.fade_out_window = None
self.output_buffer = None
self.sola_buffer = None
self.calculate_delay_time()
def calculate_delay_time(self):
crossfade_time_min = min(self.pconfig.crossfade_time, 0.04)
noise_reduce_adjustment = (1 if self.pconfig.I_noise_reduce else -1) * crossfade_time_min
self.delay_time = self.latency + self.pconfig.block_time + self.pconfig.crossfade_time + 0.01 + crossfade_time_min + noise_reduce_adjustment
def initialize_rvc_realtime(self):
#RVC
self.inp_q = Queue()
self.opt_q = Queue()
self.rvc = rvc_for_realtime.RVC(
key=self.pconfig.pitch,
pth_path=self.pconfig.pth_path,
index_path=self.pconfig.index_path,
index_rate=self.pconfig.index_rate,
n_cpu=self.pconfig.n_cpu,
inp_q=self.inp_q,
opt_q=self.opt_q,
config=self.config,
last_rvc=self.rvc if hasattr(self, "rvc") else None
)
# self.pconfig.samplerate = self.rvc.tgt_sr
#block size
self.zc = self.pconfig.samplerate // 100
self.block_frame = (int(np.round(self.pconfig.block_time * self.pconfig.samplerate / self.zc)) * self.zc)
self.block_frame_16k = 160 * self.block_frame // self.zc
self.crossfade_frame = (int(np.round(self.pconfig.crossfade_time * self.pconfig.samplerate / self.zc)) * self.zc)
self.sola_buffer_frame = min(self.crossfade_frame, 4 * self.zc)
self.sola_search_frame = self.zc
self.extra_frame = (int(np.round(self.pconfig.extra_time * self.pconfig.samplerate / self.zc)) * self.zc)
#Buffers
self.rms_buffer: np.ndarray = np.zeros(4 * self.zc, dtype="float32")
self.input_wav: torch.Tensor = torch.zeros(
self.extra_frame
+ self.crossfade_frame
+ self.sola_search_frame
+ self.block_frame,
device=self.config.device,
dtype=torch.float32,
)
self.input_wav_res: torch.Tensor = torch.zeros(
160 * self.input_wav.shape[0] // self.zc,
device=self.config.device,
dtype=torch.float32,
)
self.input_wav_denoise: torch.Tensor = self.input_wav.clone()
self.sola_buffer: torch.Tensor = torch.zeros(
self.sola_buffer_frame, device=self.config.device, dtype=torch.float32
)
self.nr_buffer: torch.Tensor = self.sola_buffer.clone()
self.output_buffer: torch.Tensor = self.input_wav.clone()
self.skip_head = self.extra_frame // self.zc
self.return_length = (self.block_frame + self.sola_buffer_frame + self.sola_search_frame) // self.zc
self.fade_in_window: torch.Tensor = (
torch.sin(
0.5
* np.pi
* torch.linspace(
0.0,
1.0,
steps=self.sola_buffer_frame,
device=self.config.device,
dtype=torch.float32,
)
)
** 2
)
self.fade_out_window: torch.Tensor = 1 - self.fade_in_window
#Threshold
self.tg = TorchGate(
sr=self.pconfig.samplerate, n_fft=4 * self.zc, prop_decrease=0.9
).to(self.config.device)
#Resampler
self.resampler = tat.Resample(
orig_freq=self.pconfig.samplerate,
new_freq=16000,
dtype=torch.float32,
).to(self.config.device)
if self.rvc.tgt_sr != self.pconfig.samplerate:
self.resampler2 = tat.Resample(
orig_freq=self.rvc.tgt_sr,
new_freq=self.pconfig.samplerate,
dtype=torch.float32,
).to(self.config.device)
else:
self.resampler2 = None
def rvc_process(self, indata, outdata):
start_time = time.perf_counter()
if self.pconfig.threshold > -60:
self._apply_threshold(indata)
self._shift_and_append_audio_buffers(indata)
if self.pconfig.I_noise_reduce:
self._input_noise_reduction()
else:
self.input_wav_res[-160 * (indata.shape[0] // self.zc + 1) :] = (self.resampler(self.input_wav[-indata.shape[0] - 2 * self.zc :])[160:])
# Infer
if self.pconfig.function == "vc":
infer_wav = self.rvc.infer(
self.input_wav_res,
self.block_frame_16k,
self.skip_head,
self.return_length,
self.pconfig.f0method,
)
if self.resampler2 is not None:
infer_wav = self.resampler2(infer_wav)
elif self.pconfig.I_noise_reduce:
infer_wav = self.input_wav_denoise[self.extra_frame :].clone()
else:
infer_wav = self.input_wav[self.extra_frame :].clone()
if self.pconfig.O_noise_reduce and self.pconfig.function == "vc":
infer_wav = self._output_noise_reduction(infer_wav)
if self.pconfig.rms_mix_rate < 1 and self.pconfig.function == "vc":
self.infer_wav = self._volume_envelope_mixing(infer_wav)
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
infer_wav = self._sola_algorithmn(infer_wav)
outdata[:] = (
infer_wav[: self.block_frame]
.t()
.cpu()
.numpy()
)
total_time = time.perf_counter() - start_time
self._printt("Infer time: %.2f", total_time)
def _apply_threshold(self, indata):
indata = np.append(self.rms_buffer, indata)
rms = librosa.feature.rms(
y=indata, frame_length=4 * self.zc, hop_length=self.zc
)[:, 2:]
self.rms_buffer[:] = indata[-4 * self.zc :]
indata = indata[2 * self.zc - self.zc // 2 :]
db_threshold = (
librosa.amplitude_to_db(rms, ref=1.0)[0] < self.pconfig.threshold
)
for i in range(db_threshold.shape[0]):
if db_threshold[i]:
indata[i * self.zc : (i + 1) * self.zc] = 0
indata = indata[self.zc // 2 :]
return indata
def _shift_and_append_audio_buffers(self, indata):
self.input_wav[: -self.block_frame] = self.input_wav[
self.block_frame :
].clone()
self.input_wav[-indata.shape[0] :] = torch.from_numpy(indata).to(
self.config.device
)
self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[
self.block_frame_16k :
].clone()
def _input_noise_reduction(self):
self.input_wav_denoise[: -self.block_frame] = self.input_wav_denoise[
self.block_frame :
].clone()
self.input_wav = self.input_wav[-self.sola_buffer_frame - self.block_frame :]
self.input_wav = self.tg(
self.input_wav.unsqueeze(0), self.input_wav.unsqueeze(0)
).squeeze(0)
self.input_wav[: self.sola_buffer_frame] *= self.fade_in_window
self.input_wav[: self.sola_buffer_frame] += (
self.nr_buffer * self.fade_out_window
)
self.input_wav_denoise[-self.block_frame :] = self.input_wav[
: self.block_frame
]
self.nr_buffer[:] = self.input_wav[self.block_frame :]
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(
self.input_wav_denoise[-self.block_frame - 2 * self.zc :]
)[160:]
def _output_noise_reduction(self, infer_wav):
self.output_buffer[: -self.block_frame] = self.output_buffer[
self.block_frame :
].clone()
self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :]
infer_wav = self.tg(infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)).squeeze(0)
return infer_wav
def _volume_envelope_mixing(self, infer_wav):
if self.pconfig.I_noise_reduce:
input_wav = self.input_wav_denoise[self.extra_frame :]
else:
input_wav = input_wav[self.extra_frame :]
rms1 = librosa.feature.rms(
y=input_wav[: infer_wav.shape[0]].cpu().numpy(),
frame_length=4 * self.zc,
hop_length=self.zc,
)
rms1 = torch.from_numpy(rms1).to(self.config.device)
rms1 = F.interpolate(
rms1.unsqueeze(0),
size=infer_wav.shape[0] + 1,
mode="linear",
align_corners=True,
)[0, 0, :-1]
rms2 = librosa.feature.rms(
y=infer_wav[:].cpu().numpy(),
frame_length=4 * self.zc,
hop_length=self.zc,
)
rms2 = torch.from_numpy(rms2).to(self.config.device)
rms2 = F.interpolate(
rms2.unsqueeze(0),
size=infer_wav.shape[0] + 1,
mode="linear",
align_corners=True,
)[0, 0, :-1]
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3)
infer_wav *= torch.pow(rms1 / rms2, torch.tensor(1 - self.pconfig.rms_mix_rate))
return infer_wav
def _sola_algorithmn(self, infer_wav):
conv_input = infer_wav[
None, None, : self.sola_buffer_frame + self.sola_search_frame
]
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
cor_den = torch.sqrt(
F.conv1d(
conv_input**2,
torch.ones(1, 1, self.sola_buffer_frame, device=self.config.device),
)
+ 1e-8
)
if sys.platform == "darwin":
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0])
sola_offset = sola_offset.item()
else:
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
infer_wav = infer_wav[sola_offset:]
if "privateuseone" in str(self.config.device) or not self.pconfig.use_pv:
infer_wav[: self.sola_buffer_frame] *= self.fade_in_window
infer_wav[: self.sola_buffer_frame] += (
self.sola_buffer * self.fade_out_window
)
else:
infer_wav[: self.sola_buffer_frame] = self._phase_vocoder(
self.sola_buffer,
infer_wav[: self.sola_buffer_frame],
self.fade_out_window,
self.fade_in_window,
)
self.sola_buffer[:] = infer_wav[
self.block_frame : self.block_frame + self.sola_buffer_frame
]
return infer_wav
def _phase_vocoder(a, b, fade_out, fade_in):
window = torch.sqrt(fade_out * fade_in)
fa = torch.fft.rfft(a * window)
fb = torch.fft.rfft(b * window)
absab = torch.abs(fa) + torch.abs(fb)
n = a.shape[0]
if n % 2 == 0:
absab[1:-1] *= 2
else:
absab[1:] *= 2
phia = torch.angle(fa)
phib = torch.angle(fb)
deltaphase = phib - phia
deltaphase = deltaphase - 2 * np.pi * torch.floor(deltaphase / 2 / np.pi + 0.5)
w = 2 * np.pi * torch.arange(n // 2 + 1).to(a) + deltaphase
t = torch.arange(n).unsqueeze(-1).to(a) / n
result = (
a * (fade_out**2)
+ b * (fade_in**2)
+ torch.sum(absab * torch.cos(w * t + phia), -1) * window / n
)
return result
def _printt(self, strr, *args):
if len(args) == 0:
print(strr)
else:
print(strr % args)
def audio_stream(self, audio_queue: deque, ws_out, event: threading.Event):
# Initialize buffers
in_buffer = np.zeros(self.block_frame, dtype=np.float32)
out_buffer = np.zeros(self.block_frame, dtype=np.float32)
while not self.stop:
event.wait(timeout=60.0) # Wait for up to 1 second
if self.stop:
break # If stop was called, exit the loop
if audio_queue:
# Extract data from the queue
block = np.array([audio_queue.popleft() for _ in range(min(len(audio_queue), self.block_frame))], dtype=np.float32)
# Copy the data to in_buffer
in_buffer[:len(block)] = block
# Pad the remaining elements with zeros if needed
if len(block) < self.block_frame:
in_buffer[len(block):] = 0.0
# Process in_buffer and send to ws_out
self.rvc_process(in_buffer, out_buffer)
ws_out.append(out_buffer.copy())
if not audio_queue:
event.clear()
def stop_stream(self):
self.stop = True
if __name__ == "__main__":
rvc = RVCWrapper()
rvc.initialize_rvc_realtime()
audio_queue = deque()
import soundfile as sf
block_size=10240
with sf.SoundFile('temp.wav') as f:
for block in f.blocks(blocksize=block_size):
audio_queue.extend(block)
outlist = []
rvc.audio_stream(audio_queue, outlist, threading.Event())
with sf.SoundFile('whatevers.wav', 'w', 24000, channels=1) as f:
for block in outlist:
f.write(block)