-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathPointRemover.py
87 lines (74 loc) · 3.25 KB
/
PointRemover.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import ifcopenshell
import os
import math
def is_collinear(p1, p2, p3, tolerance=1e-10):
"""
Check if three points (p1, p2, p3) are collinear.
Points are collinear if the area of the triangle they form is zero.
This function now uses a near-zero tolerance to prevent unwanted deletions.
"""
if len(p1) == 2 and len(p2) == 2 and len(p3) == 2:
# 2D case
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
# Calculate the area of the triangle formed by the three points
area = 0.5 * abs(x1*(y2 - y3) + x2*(y3 - y1) + x3*(y1 - y2))
return area < tolerance
elif len(p1) == 3 and len(p2) == 3 and len(p3) == 3:
# 3D case
x1, y1, z1 = p1
x2, y2, z2 = p2
x3, y3, z3 = p3
# Calculate the vectors p1p2 and p1p3
v1 = (x2 - x1, y2 - y1, z2 - z1)
v2 = (x3 - x1, y3 - y1, z3 - z1)
# Calculate the cross product of the two vectors
cross_product = (
v1[1] * v2[2] - v1[2] * v2[1],
v1[2] * v2[0] - v1[0] * v2[2],
v1[0] * v2[1] - v1[1] * v2[0]
)
# The points are collinear if the magnitude of the cross product is zero
cross_magnitude = math.sqrt(cross_product[0] ** 2 + cross_product[1] ** 2 + cross_product[2] ** 2)
return cross_magnitude < tolerance
else:
raise ValueError("All points must have the same dimension (either 2D or 3D)")
def get_cartesian_point_coordinates(cartesian_point):
"""
Extract the coordinates from an IFCCARTESIANPOINT entity.
"""
return tuple(cartesian_point.Coordinates)
def simplify_and_save_ifc_file(ifc_file_path):
# Load the IFC file
ifc_file = ifcopenshell.open(ifc_file_path)
# Iterate over all polyline entities in the file
for polyline in ifc_file.by_type("IFCPOLYLINE"):
points = polyline.Points
retained_points = []
# Iterate through points in triplets to check for collinearity
for i in range(len(points)):
if i == 0 or i == len(points) - 1:
# Always keep the first and last points
retained_points.append(points[i])
else:
# Check if the points are collinear
p1 = get_cartesian_point_coordinates(points[i-1])
p2 = get_cartesian_point_coordinates(points[i])
p3 = get_cartesian_point_coordinates(points[i+1])
if not is_collinear(p1, p2, p3):
retained_points.append(points[i])
# Replace the points in the polyline with the retained points
polyline.Points = retained_points
# Save the simplified IFC file under the same name
ifc_file.write(ifc_file_path)
def simplify_all_ifc_files_in_folder(folder_path):
# Iterate over all files in the folder
for filename in os.listdir(folder_path):
if filename.endswith(".ifc"):
file_path = os.path.join(folder_path, filename)
simplify_and_save_ifc_file(file_path)
print(f"Processed and saved: {filename}")
# Example usage
folder_to_process = r"C:\Users\LouisTrümpler\Dropbox\01_Projekte\119_Lignum\Fassadensysteme 3D in llinumdata\Ifc"
simplify_all_ifc_files_in_folder(folder_to_process)