Skip to content

Commit 8061609

Browse files
committedAug 2, 2018
180802
1 parent 08f1d62 commit 8061609

11 files changed

+1948
-78
lines changed
 

‎.idea/keras.iml

+1-1
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

‎.idea/misc.xml

+1-1
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

‎.idea/workspace.xml

+281-76
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
{
2+
"cells": [],
3+
"metadata": {},
4+
"nbformat": 4,
5+
"nbformat_minor": 2
6+
}
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,151 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"** 너무 오래걸려서 패스.... **\n",
8+
"\n",
9+
"gpu는 그냥 6~7초안에 끝나는데 얘는 무슨 몇분씩걸린다."
10+
]
11+
},
12+
{
13+
"cell_type": "code",
14+
"execution_count": 2,
15+
"metadata": {},
16+
"outputs": [
17+
{
18+
"name": "stdout",
19+
"output_type": "stream",
20+
"text": [
21+
"x_train shape: (60000, 28, 28, 1)\n",
22+
"60000 train samples\n",
23+
"10000 test samples\n",
24+
"Train on 60000 samples, validate on 10000 samples\n",
25+
"Epoch 1/12\n",
26+
" 384/60000 [..............................] - ETA: 27:43 - loss: 2.2585 - acc: 0.1380"
27+
]
28+
},
29+
{
30+
"ename": "KeyboardInterrupt",
31+
"evalue": "",
32+
"output_type": "error",
33+
"traceback": [
34+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
35+
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
36+
"\u001b[1;32m<ipython-input-2-b9f0df44fa12>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 68\u001b[0m \u001b[0mepochs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mepochs\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 69\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 70\u001b[1;33m validation_data=(x_test, y_test))\n\u001b[0m\u001b[0;32m 71\u001b[0m \u001b[0mscore\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mevaluate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 72\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Test loss:'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mscore\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
37+
"\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)\u001b[0m\n\u001b[0;32m 1040\u001b[0m \u001b[0minitial_epoch\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0minitial_epoch\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1041\u001b[0m \u001b[0msteps_per_epoch\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0msteps_per_epoch\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1042\u001b[1;33m validation_steps=validation_steps)\n\u001b[0m\u001b[0;32m 1043\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1044\u001b[0m def evaluate(self, x=None, y=None,\n",
38+
"\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\keras\\engine\\training_arrays.py\u001b[0m in \u001b[0;36mfit_loop\u001b[1;34m(model, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)\u001b[0m\n\u001b[0;32m 197\u001b[0m \u001b[0mins_batch\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mins_batch\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 198\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 199\u001b[1;33m \u001b[0mouts\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mins_batch\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 200\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 201\u001b[0m \u001b[0mouts\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mouts\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
39+
"\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, inputs)\u001b[0m\n\u001b[0;32m 2659\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_legacy_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2660\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2661\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2662\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2663\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mpy_any\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mis_tensor\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[1;32min\u001b[0m \u001b[0minputs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
40+
"\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\keras\\backend\\tensorflow_backend.py\u001b[0m in \u001b[0;36m_call\u001b[1;34m(self, inputs)\u001b[0m\n\u001b[0;32m 2629\u001b[0m \u001b[0msymbol_vals\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2630\u001b[0m session)\n\u001b[1;32m-> 2631\u001b[1;33m \u001b[0mfetched\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_callable_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0marray_vals\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2632\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mfetched\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moutputs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2633\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
41+
"\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\client\\session.py\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args)\u001b[0m\n\u001b[0;32m 1449\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_created_with_new_api\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1450\u001b[0m return tf_session.TF_SessionRunCallable(\n\u001b[1;32m-> 1451\u001b[1;33m self._session._session, self._handle, args, status, None)\n\u001b[0m\u001b[0;32m 1452\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1453\u001b[0m return tf_session.TF_DeprecatedSessionRunCallable(\n",
42+
"\u001b[1;31mKeyboardInterrupt\u001b[0m: "
43+
]
44+
}
45+
],
46+
"source": [
47+
"import keras\n",
48+
"from keras.datasets import mnist\n",
49+
"from keras.models import Sequential\n",
50+
"from keras.layers import Dense, Dropout, Flatten\n",
51+
"from keras.layers import Conv2D, MaxPooling2D\n",
52+
"import keras.backend.tensorflow_backend as kk\n",
53+
"from keras import backend as K\n",
54+
"'''\n",
55+
"cpu테스트\n",
56+
"정말 오래걸린다.\n",
57+
"'''\n",
58+
"batch_size = 128\n",
59+
"num_classes = 10\n",
60+
"epochs = 12\n",
61+
"\n",
62+
"# input image dimensions\n",
63+
"img_rows, img_cols = 28, 28\n",
64+
"\n",
65+
"# the data, split between train and test sets\n",
66+
"(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
67+
"\n",
68+
"if K.image_data_format() == 'channels_first':\n",
69+
" x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)\n",
70+
" x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)\n",
71+
" input_shape = (1, img_rows, img_cols)\n",
72+
"else:\n",
73+
" x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)\n",
74+
" x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)\n",
75+
" input_shape = (img_rows, img_cols, 1)\n",
76+
"\n",
77+
"x_train = x_train.astype('float32')\n",
78+
"x_test = x_test.astype('float32')\n",
79+
"x_train /= 255\n",
80+
"x_test /= 255\n",
81+
"print('x_train shape:', x_train.shape)\n",
82+
"print(x_train.shape[0], 'train samples')\n",
83+
"print(x_test.shape[0], 'test samples')\n",
84+
"\n",
85+
"# convert class vectors to binary class matrices\n",
86+
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
87+
"y_test = keras.utils.to_categorical(y_test, num_classes)\n",
88+
"\n",
89+
"import tensorflow as tf\n",
90+
"config = tf.ConfigProto()\n",
91+
"config.gpu_options.allow_growth = True\n",
92+
"session = tf.Session(config=config)\n",
93+
"\n",
94+
"\n",
95+
"with kk.tf_ops.device('/device:CPU:0'):\n",
96+
" model = Sequential()\n",
97+
" model.add(Conv2D(32, kernel_size=(3, 3),\n",
98+
" activation='relu',\n",
99+
" input_shape=input_shape))\n",
100+
" model.add(Conv2D(64, (3, 3), activation='relu'))\n",
101+
" model.add(MaxPooling2D(pool_size=(2, 2)))\n",
102+
" model.add(Dropout(0.25))\n",
103+
" model.add(Flatten())\n",
104+
" model.add(Dense(128, activation='relu'))\n",
105+
" model.add(Dropout(0.5))\n",
106+
" model.add(Dense(num_classes, activation='softmax'))\n",
107+
"\n",
108+
" model.compile(loss=keras.losses.categorical_crossentropy,\n",
109+
" optimizer=keras.optimizers.Adadelta(),\n",
110+
" metrics=['accuracy'])\n",
111+
"\n",
112+
" model.fit(x_train, y_train,\n",
113+
" batch_size=batch_size,\n",
114+
" epochs=epochs,\n",
115+
" verbose=1,\n",
116+
" validation_data=(x_test, y_test))\n",
117+
"score = model.evaluate(x_test, y_test, verbose=0)\n",
118+
"print('Test loss:', score[0])\n",
119+
"print('Test accuracy:', score[1])"
120+
]
121+
},
122+
{
123+
"cell_type": "code",
124+
"execution_count": null,
125+
"metadata": {},
126+
"outputs": [],
127+
"source": []
128+
}
129+
],
130+
"metadata": {
131+
"kernelspec": {
132+
"display_name": "Python 3",
133+
"language": "python",
134+
"name": "python3"
135+
},
136+
"language_info": {
137+
"codemirror_mode": {
138+
"name": "ipython",
139+
"version": 3
140+
},
141+
"file_extension": ".py",
142+
"mimetype": "text/x-python",
143+
"name": "python",
144+
"nbconvert_exporter": "python",
145+
"pygments_lexer": "ipython3",
146+
"version": "3.6.5"
147+
}
148+
},
149+
"nbformat": 4,
150+
"nbformat_minor": 2
151+
}

0 commit comments

Comments
 (0)
Please sign in to comment.