-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2_wrangle-p-fractions.R
582 lines (517 loc) · 26.2 KB
/
2_wrangle-p-fractions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
## ------------------------------------------ ##
# SPARC Soil P -- Data Wrangling
## ------------------------------------------ ##
# Script author(s): Nick J Lyon
# Purpose:
## Flips archival data to wide format and calculates various P fraction sums
## ------------------------------------------ ##
# Housekeeping -----
## ------------------------------------------ ##
# Load necessary libraries
# install.packages("librarian")
librarian::shelf(tidyverse, googledrive, magrittr)
# Create necessary sub-folder(s)
dir.create(path = file.path("data", "tidy_data"), showWarnings = F)
# Clear environment
rm(list = ls())
# Identify raw data files
tidy_drive <- googledrive::as_id("https://drive.google.com/drive/u/0/folders/1pjgN-wRlec65NDLBvryibifyx6k9Iqy9")
# Identify the archival data in that folder and download it
googledrive::drive_ls(path = tidy_drive) %>%
dplyr::filter(name == "sparc-soil-p_archival-data.csv") %>%
googledrive::drive_download(file = .$id, overwrite = T,
path = file.path("data", "tidy_data", .$name))
# Read that file in
sparc_v1 <- read.csv(file = file.path("data", "tidy_data",
"sparc-soil-p_archival-data.csv")) %>%
# Drop row number column
dplyr::select(-row_num)
# HERE WE'RE ASSIGNING ARBITRARY START AND END DEPTHS TO THE HURRICAN SEDIMENT HORIZON OF FCE, BECAUSE THE REAL END DEPTHS WERE A RANGE 0.5-4.5 THAT WE DON'T HAVE THE DATA FOR. BUT WE NEED TO ADD VALUES SO P_FRACTIONS FUNCTION WILL WORK.
# We revert these values back to NA at the end of the script
sparc_v1$depth.start_cm <- ifelse(sparc_v1$horizon_binary == "hurricane",0,sparc_v1$depth.start_cm)
sparc_v1$depth.end_cm <- ifelse(sparc_v1$horizon_binary == "hurricane",0,sparc_v1$depth.end_cm)
test <- sparc_v1 %>%
filter(dataset_simp == "FCE")
# Glimpse it!
dplyr::glimpse(sparc_v1)
## ------------------------------------------ ##
# Streamline Data ----
## ------------------------------------------ ##
# The archival data is ideal for general purpose
# However, it contains details we neither want nor need for SPARC purposes
sparc_v2 <- sparc_v1 %>%
# Drop unwanted columns
dplyr::select(-molarity, -time, -temp) %>%
# Fill remaining P information columns with placeholders where needed
dplyr::mutate(
measurement = ifelse((is.na(measurement) | nchar(measurement) == 0),
yes = "data.type", no = measurement),
units = ifelse((is.na(units) | nchar(units) == 0),
yes = "units", no = units),
order = ifelse((is.na(order) | nchar(order) == 0),
yes = "order", no = order),
reagent = ifelse((is.na(reagent) | nchar(reagent) == 0),
yes = "reagent", no = reagent)
) %>%
# Recombine them into a single column
dplyr::mutate(fractions = dplyr::case_when(
reagent == "total" ~ paste(p_type, measurement, units, reagent, sep = "_"),
T ~ paste(p_type, measurement, units, order, reagent, sep = "_"))) %>%
# Drop the separate pieces of information
dplyr::select(-p_type, -measurement, -units, -order, -reagent) %>%
# Reclaim wide format!
tidyr::pivot_wider(names_from = fractions,
values_from = value,
values_fill = NA) %>%
# And rename Al/Fe columns more simply
dplyr::rename(Al_conc_mg.g_AC = Al_conc_mg.g_1_molarity_AC_time_temp,
Al_conc_mg.g_OX = Al_conc_mg.g_1_molarity_OX_time_temp,
Fe_conc_mg.g_AC = Fe_conc_mg.g_1_molarity_AC_time_temp,
Fe_conc_mg.g_OX = Fe_conc_mg.g_1_molarity_OX_time_temp,
Fe2_conc_mg.g_HCl = Fe2_conc_mg.g_order_molarity_HCl_time_temp,
Fe3_conc_mg.g_HCl = Fe3_conc_mg.g_order_molarity_HCl_time_temp)
# Glimpse data structure
dplyr::glimpse(sparc_v2)
## ------------------------------------------ ##
# Phosphorus Sums Prep ----
## ------------------------------------------ ##
# Glimpse the entire dataset
dplyr::glimpse(sparc_v2)
# Need to replace all NAs in P fraction columns with 0s to do addition
p_sums_v1 <- sparc_v2 %>%
# First need to fill NAs with 0s to avoid making NA sums
## Pivot longer
tidyr::pivot_longer(cols = c(dplyr::starts_with("P_"),
dplyr::starts_with("Po_"),
dplyr::starts_with("Pi_")),
names_to = "names", values_to = "values") %>%
## Remove NA / missing values
dplyr::filter(!is.na(values) & nchar(values) != 0) %>%
## Pivot back to wide format and fill empty cells with 0
tidyr::pivot_wider(names_from = names, values_from = values,
values_fill = NA) %>% # on 3/26 replacing this with NA (from zero) just to see if it resolves NWT_1 issue where one site doesn't have slow P info, so it shows up as NA instead of zero.
# Also drop P stocks (mg/m2)
dplyr::select(-dplyr::contains("_stock_"))
# Check that out
dplyr::glimpse(p_sums_v1)
## ------------------------------------------ ##
# Function for P Fraction Checking ----
## ------------------------------------------ ##
# Make the function to identify which P fractions exist for each dataset
p_fractions <- function(){
# Loop across data objects
for(data_obj in sort(unique(p_sums_v1$dataset))){
# Want to know which P fractions are actually in the data
sub <- p_sums_v1 %>%
# Filter to this dataset
dplyr::filter(dataset == data_obj) %>%
# Drop completely NA/empty columns
dplyr::select(dplyr::where(fn = ~ !(all(is.na(.) | all(nchar(.) == 0) | all(. == 0)) ) ) ) %>%
# Keep only P concentration columns
dplyr::select(dplyr::contains("_conc_mg.kg")) %>%
# What is left?
names()
# Message that out for later use
message("Following fractions found for dataset '", data_obj, "': ")
print(paste(sub, collapse = "; ")) }
}
## ------------------------------------------ ##
# P Sums - Slow ----
## ------------------------------------------ ##
# Check existing fractions
p_fractions()
# Now we'll want to add together our various types of P (conditionally)
p_sums_v2 <- p_sums_v1 %>%
# Calculate slow P conditionally
dplyr::mutate(slow.P_conc_mg.kg = dplyr::case_when(
dataset == "Bonanza Creek_1" ~ NA,
dataset == "Bonanza Creek_2" ~ NA,
dataset == "Bonanza Creek_3" ~ NA,
dataset == "Brazil_SouthernAmazon" ~ NA,
dataset == "Brazil_AtlanticForest" ~ NA,
dataset == "Calhoun" ~ (P_conc_mg.kg_4_HCl),
dataset == "CedarCreek" ~ (P_conc_mg.kg_4_HCl),
dataset == "ChichaquaBottoms" ~ NA,
dataset == "Coweeta" ~ (P_conc_mg.kg_4_HCl),
dataset == "HJAndrews_1" ~ (P_conc_mg.kg_4_HCl),
dataset == "Hubbard Brook" ~ (P_conc_mg.kg_3_HNO3),
dataset == "FloridaCoastal" ~ (P_conc_mg.kg_4_HCl),
dataset == "Jornada_1" ~ NA,
dataset == "Jornada_2" ~ (P_conc_mg.kg_3_HCl),
dataset == "Kellogg_Bio_Station" ~ (Pi_conc_mg.kg_6_HCl),
dataset == "Konza_1" ~ (P_conc_mg.kg_3_Ca.bound),
dataset == "Konza_2" ~ (P_conc_mg.kg_5_HCl),
dataset == "Luquillo_1" ~ NA,
dataset == "Luquillo_2" ~ (P_conc_mg.kg_4_HCl),
dataset == "Luquillo_3" ~ NA,
dataset == "Niwot_1" ~ (P_conc_mg.kg_4_HCl),
dataset == "Niwot_2" ~ (P_conc_mg.kg_4_HCl),
dataset == "Niwot_3" ~ NA,
dataset == "Niwot_4" ~ NA,
dataset == "Niwot_5" ~ (P_conc_mg.kg_4_HCl),
dataset == "Sevilleta_1" ~ (P_conc_mg.kg_5_HCl),
dataset == "Sevilleta_2" ~ NA,
dataset == "Tapajos" ~ (P_conc_mg.kg_4_HCl),
# (vvv) If resulting number is negative it gets set to zero
dataset == "Toolik_1" ~ ifelse((P_conc_mg.kg_1_HCl - P_conc_mg.kg_1_citrate) < 0,
yes = 0,
no = P_conc_mg.kg_1_HCl - P_conc_mg.kg_1_citrate),
dataset == "Toolik_2" ~ NA,
T ~ NA))
## ------------------------------------------ ##
# P Sums - Total ----
## ------------------------------------------ ##
# Check existing fractions
p_fractions()
# Calculate total P next
p_sums_v3 <- p_sums_v2 %>%
# Do the same for total P
dplyr::mutate(total.P_conc_mg.kg = dplyr::case_when(
dataset == "Bonanza Creek_1" ~ (P_conc_mg.kg_total),
dataset == "Bonanza Creek_2" ~ (P_conc_mg.kg_total),
dataset == "Bonanza Creek_3" ~ (P_conc_mg.kg_total),
dataset == "Brazil_SouthernAmazon" ~ (P_conc_mg.kg_total),
dataset == "Brazil_AtlanticForest" ~ (P_conc_mg.kg_total),
dataset == "Calhoun" ~ (P_conc_mg.kg_total),
dataset == "CedarCreek" ~ (P_conc_mg.kg_total),
dataset == "ChichaquaBottoms" ~ (P_conc_mg.kg_total),
dataset == "Coweeta" ~ (P_conc_mg.kg_1_NH4Cl + P_conc_mg.kg_2_HCO3Na2S2O4 + P_conc_mg.kg_3_NaOH +
P_conc_mg.kg_4_HCl + P_conc_mg.kg_5_residual),
dataset == "HJAndrews_1" ~ (P_conc_mg.kg_total),
# (vvv) Both HNO3s should be used (3 is cold, 4 is hot)
dataset == "Hubbard Brook" ~ (P_conc_mg.kg_1_NH4Cl + P_conc_mg.kg_2_H2O2 +
P_conc_mg.kg_3_HNO3 + P_conc_mg.kg_4_HNO3),
dataset == "FloridaCoastal" ~ (Pi_conc_mg.kg_1_resin + P_conc_mg.kg_2_HCO3 +
Pi_conc_mg.kg_3_NaOH + Po_conc_mg.kg_3_NaOH + P_conc_mg.kg_4_HCl +
P_conc_mg.kg_5_residual),
dataset == "Jornada_1" ~ (P_conc_mg.kg_total),
dataset == "Jornada_2" ~ (P_conc_mg.kg_1_MgCl2 + P_conc_mg.kg_2_NaOH + P_conc_mg.kg_3_HCl +
P_conc_mg.kg_4_residual),
dataset == "Kellogg_Bio_Station" ~ (Pi_conc_mg.kg_1_resin +
Pi_conc_mg.kg_2_NaHCO3 +
Po_conc_mg.kg_2_NaHCO3 +
Pi_conc_mg.kg_3_microbial +
Po_conc_mg.kg_3_microbial +
Pi_conc_mg.kg_4_NaOH + Po_conc_mg.kg_4_NaOH +
Pi_conc_mg.kg_5_sonic.NaOH +
Po_conc_mg.kg_5_sonic.NaOH +
Pi_conc_mg.kg_6_HCl + P_conc_mg.kg_7_residual),
dataset == "Konza_1" ~ (P_conc_mg.kg_1_Al.Fe + P_conc_mg.kg_2_occluded +
P_conc_mg.kg_3_Ca.bound),
dataset == "Konza_2" ~ (P_conc_mg.kg_total),
dataset == "Luquillo_1" ~ NA,
## (vvv) May exchange for pre-existing 'total P' column in raw data
dataset == "Luquillo_2" ~ (Pi_conc_mg.kg_1_resin + P_conc_mg.kg_2_NaHCO3 +
P_conc_mg.kg_3_NaOH + P_conc_mg.kg_4_HCl +
P_conc_mg.kg_5_residual),
dataset == "Luquillo_3" ~ (P_conc_mg.kg_total),
dataset == "Niwot_1" ~ (Pi_conc_mg.kg_1_resin +
Pi_conc_mg.kg_2_HCO3 + Po_conc_mg.kg_2_HCO3 +
Pi_conc_mg.kg_3_NaOH + Po_conc_mg.kg_3_NaOH +
P_conc_mg.kg_4_HCl +
Pi_conc_mg.kg_5_sonic.HCl + Po_conc_mg.kg_5_sonic.HCl +
P_conc_mg.kg_6_residual),
dataset == "Niwot_2" ~ (Pi_conc_mg.kg_1_resin +
Pi_conc_mg.kg_2_HCO3 + Po_conc_mg.kg_2_HCO3 +
Pi_conc_mg.kg_3_NaOH + Po_conc_mg.kg_3_NaOH +
P_conc_mg.kg_4_HCl + P_conc_mg.kg_5_residual),
dataset == "Niwot_3" ~ (P_conc_mg.kg_total),
dataset == "Niwot_4" ~ (P_conc_mg.kg_total),
dataset == "Niwot_5" ~ (P_conc_mg.kg_order_total.),
dataset == "Sevilleta_1" ~ (P_conc_mg.kg_total),
dataset == "Sevilleta_2" ~ (P_conc_mg.kg_total),
dataset == "Toolik_1" ~ (P_conc_mg.kg_1_ashing.HCl),
dataset == "Toolik_2" ~ (P_conc_mg.kg_total),
dataset == "Tapajos" ~ (P_conc_mg.kg_order_total.),
T ~ NA))
## ------------------------------------------ ##
# P Sums - Available ----
## ------------------------------------------ ##
# Check existing fractions
p_fractions()
# Calculate available P
p_sums_v4 <- p_sums_v3 %>%
dplyr::mutate(available.P_conc_mg.kg = dplyr::case_when(
dataset == "Bonanza Creek_1" ~ NA,
dataset == "Bonanza Creek_2" ~ NA,
dataset == "Bonanza Creek_3" ~ NA,
dataset == "Brazil_SouthernAmazon" ~ NA,
dataset == "Brazil_AtlanticForest" ~ NA,
dataset == "Calhoun" ~ (Pi_conc_mg.kg_1_resin + Po_conc_mg.kg_2_HCO3 + Pi_conc_mg.kg_2_HCO3),
dataset == "CedarCreek" ~ (P_conc_mg.kg_2_NaHCO3 + P_conc_mg.kg_1_H2O),
dataset == "ChichaquaBottoms" ~ NA,
dataset == "Coweeta" ~ (P_conc_mg.kg_1_NH4Cl),
dataset == "FloridaCoastal" ~ (Pi_conc_mg.kg_1_resin + P_conc_mg.kg_2_HCO3),
dataset == "HJAndrews_1" ~ (Pi_conc_mg.kg_1_resin + P_conc_mg.kg_2_HCO3),
dataset == "Hubbard Brook" ~ NA,
dataset == "Jornada_1" ~ NA,
dataset == "Jornada_2" ~ NA,
dataset == "Kellogg_Bio_Station" ~ (Pi_conc_mg.kg_1_resin +
Po_conc_mg.kg_2_NaHCO3 + Pi_conc_mg.kg_2_NaHCO3),
dataset == "Konza_1" ~ NA,
dataset == "Konza_2" ~ (Po_conc_mg.kg_2_HCO3 + Pi_conc_mg.kg_2_HCO3),
dataset == "Luquillo_1" ~ (Pi_conc_mg.kg_1_resin + Po_conc_mg.kg_1_HCO3 + Pi_conc_mg.kg_1_HCO3),
dataset == "Luquillo_2" ~ (Pi_conc_mg.kg_1_resin + P_conc_mg.kg_2_NaHCO3),
dataset == "Luquillo_3" ~ NA,
dataset == "Niwot_1" ~ (Pi_conc_mg.kg_1_resin + Po_conc_mg.kg_2_HCO3 + Pi_conc_mg.kg_2_HCO3),
dataset == "Niwot_2" ~ (Pi_conc_mg.kg_1_resin + Po_conc_mg.kg_2_HCO3 + Pi_conc_mg.kg_2_HCO3),
dataset == "Niwot_3" ~ NA,
dataset == "Niwot_4" ~ NA,
dataset == "Niwot_5" ~ (Pi_conc_mg.kg_1_resin + Po_conc_mg.kg_2_NaHCO3 + Pi_conc_mg.kg_2_NaHCO3),
dataset == "Sevilleta_1" ~ (P_conc_mg.kg_2_HCO3),
dataset == "Sevilleta_2" ~ NA,
dataset == "Tapajos" ~ (Pi_conc_mg.kg_1_resin + P_conc_mg.kg_2_NaHCO3),
dataset == "Toolik_1" ~ (P_conc_mg.kg_1_K2SO4),
dataset == "Toolik_2" ~ NA,
T ~ NA))
## ------------------------------------------ ##
# P Sums - Bicarb ----
## ------------------------------------------ ##
# Check existing fractions
p_fractions()
# Calculate bicarb P
p_sums_v5 <- p_sums_v4 %>%
dplyr::mutate(bicarb.P_conc_mg.kg = dplyr::case_when(
dataset == "Bonanza Creek_1" ~ NA,
dataset == "Bonanza Creek_2" ~ NA,
dataset == "Bonanza Creek_3" ~ NA,
dataset == "Brazil_SouthernAmazon" ~ NA,
dataset == "Brazil_AtlaticForest" ~ NA,
dataset == "Calhoun" ~ (Po_conc_mg.kg_2_HCO3 + Pi_conc_mg.kg_2_HCO3),
dataset == "CedarCreek" ~ (P_conc_mg.kg_2_NaHCO3),
dataset == "ChichaquaBottoms" ~ NA,
dataset == "Coweeta" ~ NA,
dataset == "FloridaCoastal" ~ (P_conc_mg.kg_2_HCO3),
dataset == "HJAndrews_1" ~ (P_conc_mg.kg_2_HCO3),
dataset == "Hubbard Brook" ~ NA,
dataset == "Jornada_1" ~ NA,
dataset == "Jornada_2" ~ NA,
dataset == "Kellogg_Bio_Station" ~ (Po_conc_mg.kg_2_NaHCO3 + Pi_conc_mg.kg_2_NaHCO3),
dataset == "Konza_1" ~ NA,
dataset == "Konza_2" ~ (Po_conc_mg.kg_2_HCO3 + Pi_conc_mg.kg_2_HCO3),
dataset == "Luquillo_1" ~ (Po_conc_mg.kg_1_HCO3 + Pi_conc_mg.kg_1_HCO3),
dataset == "Luquillo_2" ~ (P_conc_mg.kg_2_NaHCO3),
dataset == "Luquillo_3" ~ NA,
dataset == "Niwot_1" ~ (Po_conc_mg.kg_2_HCO3 + Pi_conc_mg.kg_2_HCO3),
dataset == "Niwot_2" ~ (Po_conc_mg.kg_2_HCO3 + Pi_conc_mg.kg_2_HCO3),
dataset == "Niwot_3" ~ NA,
dataset == "Niwot_4" ~ NA,
dataset == "Niwot_5" ~ (Po_conc_mg.kg_2_NaHCO3 + Pi_conc_mg.kg_2_NaHCO3),
dataset == "Sevilleta_1" ~ ( P_conc_mg.kg_2_HCO3),
dataset == "Sevilleta_2" ~ NA,
dataset == "Tapajos" ~ (P_conc_mg.kg_2_NaHCO3),
dataset == "Toolik_1" ~ NA,
dataset == "Toolik_2" ~ NA,
T ~ NA))
## ------------------------------------------ ##
# P Sums - Biological ----
## ------------------------------------------ ##
# Check existing fractions
p_fractions()
# Calculate biological P (this is the sum up to NaOH for fractionations that explicitly look at organic P)
p_sums_v6 <- p_sums_v5 %>%
dplyr::mutate(biological.P_conc_mg.kg = dplyr::case_when(
dataset == "Bonanza Creek_1" ~ NA,
dataset == "Bonanza Creek_2" ~ NA,
dataset == "Bonanza Creek_3" ~ NA,
dataset == "Brazil_SouthernAmazon" ~ NA,
dataset == "Brazil_AtlanticForest" ~ NA,
dataset == "Calhoun" ~ (Pi_conc_mg.kg_1_resin + Po_conc_mg.kg_2_HCO3 + Po_conc_mg.kg_3_NaOH),
dataset == "CedarCreek" ~ NA,
dataset == "ChichaquaBottoms" ~ NA,
dataset == "Coweeta" ~ NA,
dataset == "FloridaCoastal" ~ NA,
dataset == "HJAndrews_1" ~ NA,
dataset == "Hubbard Brook" ~ NA,
dataset == "Jornada_1" ~ NA,
dataset == "Jornada_2" ~ NA,
dataset == "Kellogg_Bio_Station" ~ (Pi_conc_mg.kg_1_resin + Po_conc_mg.kg_2_NaHCO3 +
Po_conc_mg.kg_4_NaOH),
dataset == "Konza_1" ~ NA,
dataset == "Konza_2" ~ (Po_conc_mg.kg_2_HCO3 + Po_conc_mg.kg_4_NaOH),
dataset == "Luquillo_1" ~ NA,
dataset == "Luquillo_2" ~ NA,
dataset == "Luquillo_3" ~ NA,
dataset == "Niwot_1" ~ (Pi_conc_mg.kg_1_resin + Po_conc_mg.kg_2_HCO3 + Po_conc_mg.kg_3_NaOH),
dataset == "Niwot_2" ~ (Pi_conc_mg.kg_1_resin + Po_conc_mg.kg_2_HCO3 + Po_conc_mg.kg_3_NaOH),
dataset == "Niwot_3" ~ NA,
dataset == "Niwot_4" ~ NA,
dataset == "Niwot_5" ~ (Pi_conc_mg.kg_1_resin + Po_conc_mg.kg_2_NaHCO3 + Po_conc_mg.kg_3_NaOH),
dataset == "Sevilleta_1" ~ NA,
dataset == "Sevilleta_2" ~ NA,
dataset == "Tapajos" ~ (Pi_conc_mg.kg_1_resin),
dataset == "Toolik_1" ~ NA,
dataset == "Toolik_2" ~ NA,
T ~ NA))
## ------------------------------------------ ##
# P Sums - Intermediate ----
## ------------------------------------------ ##
# Check existing fractions
p_fractions()
# Calculate intermediate P
p_sums_v7 <- p_sums_v6 %>%
dplyr::mutate(intermediate.P_conc_mg.kg = dplyr::case_when(
dataset == "Bonanza Creek_1" ~ NA,
dataset == "Bonanza Creek_2" ~ NA,
dataset == "Bonanza Creek_3" ~ NA,
dataset == "Brazil_SouthernAmazon" ~ NA,
dataset == "Brazil_AtlanticForest" ~ NA,
dataset == "Calhoun" ~ (Pi_conc_mg.kg_1_resin +
Po_conc_mg.kg_2_HCO3 + Pi_conc_mg.kg_2_HCO3 +
Po_conc_mg.kg_3_NaOH + Pi_conc_mg.kg_3_NaOH),
dataset == "CedarCreek" ~ (P_conc_mg.kg_3_NaOH + P_conc_mg.kg_2_NaHCO3 + P_conc_mg.kg_1_H2O),
dataset == "ChichaquaBottoms" ~ NA,
dataset == "Coweeta" ~ (P_conc_mg.kg_1_NH4Cl + P_conc_mg.kg_3_NaOH),
dataset == "FloridaCoastal" ~ (P_conc_mg.kg_2_HCO3 +
Po_conc_mg.kg_3_NaOH + Pi_conc_mg.kg_3_NaOH),
dataset == "HJAndrews_1" ~ (Pi_conc_mg.kg_1_resin + P_conc_mg.kg_2_HCO3 + P_conc_mg.kg_3_NaOH),
dataset == "Hubbard Brook" ~ NA,
dataset == "Jornada_1" ~ NA,
dataset == "Jornada_2" ~ (P_conc_mg.kg_1_MgCl2 + P_conc_mg.kg_2_NaOH),
dataset == "Kellogg_Bio_Station" ~ (Pi_conc_mg.kg_1_resin +
Po_conc_mg.kg_2_NaHCO3 + Pi_conc_mg.kg_2_NaHCO3 +
Po_conc_mg.kg_4_NaOH + Pi_conc_mg.kg_4_NaOH),
dataset == "Konza_1" ~ NA,
dataset == "Konza_2" ~ (Po_conc_mg.kg_3_NaOH + Pi_conc_mg.kg_3_NaOH + Po_conc_mg.kg_2_HCO3 + Pi_conc_mg.kg_2_HCO3),
dataset == "Luquillo_1" ~ (Po_conc_mg.kg_1_HCO3 + Pi_conc_mg.kg_1_HCO3 +
Po_conc_mg.kg_2_NaOH + Pi_conc_mg.kg_2_NaOH),
dataset == "Luquillo_2" ~ (P_conc_mg.kg_2_NaHCO3 + P_conc_mg.kg_3_NaOH),
dataset == "Luquillo_3" ~ (Po_conc_mg.kg_1_NaOH + Pi_conc_mg.kg_1_NaOH),
dataset == "Niwot_1" ~ (Pi_conc_mg.kg_1_resin +
Po_conc_mg.kg_2_HCO3 + Pi_conc_mg.kg_2_HCO3 +
Po_conc_mg.kg_3_NaOH + Pi_conc_mg.kg_3_NaOH),
dataset == "Niwot_2" ~ (Pi_conc_mg.kg_1_resin +
Po_conc_mg.kg_2_HCO3 + Pi_conc_mg.kg_2_HCO3 +
Po_conc_mg.kg_3_NaOH + Pi_conc_mg.kg_3_NaOH),
dataset == "Niwot_3" ~ NA,
dataset == "Niwot_4" ~ NA,
dataset == "Niwot_5" ~ (Pi_conc_mg.kg_1_resin +
Po_conc_mg.kg_2_HCO3 + Pi_conc_mg.kg_2_HCO3 +
Po_conc_mg.kg_3_NaOH + Pi_conc_mg.kg_3_NaOH),
dataset == "Sevilleta_1" ~ (P_conc_mg.kg_2_HCO3 + P_conc_mg.kg_3_NaOH),
dataset == "Sevilleta_2" ~ NA,
dataset == "Tapajos" ~ (Pi_conc_mg.kg_1_resin + P_conc_mg.kg_3_NaOH + P_conc_mg.kg_2_NaHCO3),
dataset == "Toolik_1" ~ NA,
dataset == "Toolik_2" ~ NA,
T ~ NA))
## ------------------------------------------ ##
# P Sums - NaOH P ----
## ------------------------------------------ ##
# Check existing fractions
p_fractions()
# Calculate NaOH P
p_sums_v8 <- p_sums_v7 %>%
dplyr::mutate(NaOH.P_conc_mg.kg = dplyr::case_when(
dataset == "Bonanza Creek_1" ~ NA,
dataset == "Bonanza Creek_2" ~ NA,
dataset == "Bonanza Creek_3" ~ NA,
dataset == "Brazil_SouthernAmazon" ~ NA,
dataset == "Brazil_AtlanticForest" ~ NA,
dataset == "Calhoun" ~ (Po_conc_mg.kg_3_NaOH + Pi_conc_mg.kg_3_NaOH),
dataset == "CedarCreek" ~ (P_conc_mg.kg_3_NaOH),
dataset == "ChichaquaBottoms" ~ NA,
dataset == "Coweeta" ~ (P_conc_mg.kg_3_NaOH),
dataset == "FloridaCoastal" ~ (Po_conc_mg.kg_3_NaOH + Pi_conc_mg.kg_3_NaOH),
dataset == "HJAndrews_1" ~ (P_conc_mg.kg_3_NaOH),
dataset == "Hubbard Brook" ~ NA,
dataset == "Jornada_1" ~ NA,
dataset == "Jornada_2" ~ (P_conc_mg.kg_2_NaOH),
dataset == "Kellogg_Bio_Station" ~ (Po_conc_mg.kg_4_NaOH + Po_conc_mg.kg_5_sonic.NaOH + Pi_conc_mg.kg_4_NaOH + Pi_conc_mg.kg_5_sonic.NaOH),
dataset == "Konza_1" ~ NA,
dataset == "Konza_2" ~ (Po_conc_mg.kg_3_NaOH + Pi_conc_mg.kg_3_NaOH),
dataset == "Luquillo_1" ~ (Po_conc_mg.kg_2_NaOH + Pi_conc_mg.kg_2_NaOH),
dataset == "Luquillo_2" ~ (P_conc_mg.kg_3_NaOH),
dataset == "Luquillo_3" ~ (Po_conc_mg.kg_1_NaOH + Pi_conc_mg.kg_1_NaOH),
dataset == "Niwot_1" ~ (Po_conc_mg.kg_3_NaOH + Pi_conc_mg.kg_3_NaOH),
dataset == "Niwot_2" ~ (Po_conc_mg.kg_3_NaOH + Pi_conc_mg.kg_3_NaOH),
dataset == "Niwot_3" ~ NA,
dataset == "Niwot_4" ~ NA,
dataset == "Niwot_5" ~ (Po_conc_mg.kg_3_NaOH + Pi_conc_mg.kg_3_NaOH),
dataset == "Sevilleta_1" ~ (P_conc_mg.kg_3_NaOH),
dataset == "Sevilleta_2" ~ NA,
dataset == "Tapajos" ~ (P_conc_mg.kg_3_NaOH),
dataset == "Toolik_1" ~ NA,
dataset == "Toolik_2" ~ NA,
T ~ NA))
## ------------------------------------------ ##
# Finish P Sums ----
## ------------------------------------------ ##
# Make a final version of the p_sums object that is as simple as possible
p_sums <- p_sums_v8 %>%
# Remove all P fraction columns (because we changed real NAs to convenient 0s)
dplyr::select(-dplyr::starts_with("P_"), -dplyr::starts_with("Po_"),
-dplyr::starts_with("Pi_")) %>%
# Keep only unique rows
dplyr::distinct()
# Any datasets missing? (This step doesn't update p_sums 1, just double checking that there are data values in columns where there should be for each site)
p_sums %>%
dplyr::filter(is.na(slow.P_conc_mg.kg) | is.na(total.P_conc_mg.kg) |
is.na(available.P_conc_mg.kg) | is.na(bicarb.P_conc_mg.kg) |
is.na(biological.P_conc_mg.kg) | is.na(intermediate.P_conc_mg.kg) |
is.na(NaOH.P_conc_mg.kg) ) %>%
dplyr::group_by(dataset) %>%
dplyr::summarize(slow_mean = mean(slow.P_conc_mg.kg, na.rm = T),
total_mean = mean(total.P_conc_mg.kg, na.rm = T),
avail_mean = mean(available.P_conc_mg.kg, na.rm = T),
bicarb_mean = mean(bicarb.P_conc_mg.kg, na.rm = T),
bio_mean = mean(biological.P_conc_mg.kg, na.rm = T),
inter_mean = mean(intermediate.P_conc_mg.kg, na.rm = T),
naoh_mean = mean(NaOH.P_conc_mg.kg, na.rm = T) ) %>%
dplyr::distinct() %>%
view()
# Check structure
dplyr::glimpse(p_sums)
# Note we're doing this in a separate object because we coerced NAs into 0s for algebra reasons
## They're not "real" 0s so we want to preserve the real 0s while still easily getting sums
# Now we can attach our sums to the original tidy object
sparc_v3 <- sparc_v2 %>%
# By not specifying which columns to join by, all shared columns will be used
dplyr::left_join(y = p_sums) %>%
# Move our P sums to the left for more easy reference
dplyr::relocate(dplyr::ends_with(".P_conc_mg.kg"),
.after = bulk.density_kg.ha)
# Check structure
dplyr::glimpse(sparc_v3)
## ------------------------------------------ ##
# Stock P Calculations ----
## ------------------------------------------ ##
# Calculate absolute P totals (rather than portions of each core)
sparc_v4 <- sparc_v3 %>%
# Multiply P concentration by core length & bulk density to get stocks
dplyr::mutate(slow.P_temp = slow.P_conc_mg.kg * core.length_cm * bulk.density_g.cm3,
total.P_temp = total.P_conc_mg.kg * core.length_cm * bulk.density_g.cm3) %>%
# Do unit conversions to get to g/m2
dplyr::mutate(slow.P_stock_g.m2 = (slow.P_temp * 10^4) / 10^6,
.before = slow.P_conc_mg.kg) %>%
dplyr::mutate(total.P_stock_g.m2 = (total.P_temp * 10^4) / 10^6,
.before = total.P_conc_mg.kg) %>%
# Drop intermediary columns
dplyr::select(-slow.P_temp, -total.P_temp)
# Check contents of those columns
summary(sparc_v4$slow.P_stock_g.m2)
summary(sparc_v4$total.P_stock_g.m2)
# Re-check structure
dplyr::glimpse(sparc_v4[1:35])
## ------------------------------------------ ##
# Export P Sums Data ----
## ------------------------------------------ ##
# Make a final data object
final_sparc <- sparc_v4
# Here we are reverting the FCE hurricane sediment horizon values back to NAs
final_sparc$depth.start_cm <- ifelse(final_sparc$horizon_binary == "hurricane",NA,final_sparc$depth.start_cm)
final_sparc$depth.end_cm <- ifelse(final_sparc$horizon_binary == "hurricane",NA,final_sparc$depth.end_cm)
# # Looking for N and C
# site_n <- dplyr::filter(.data = final_sparc, !is.na(N_conc_percent))
# uni <- as.data.frame(unique(site_n$dataset))
# site_c <- dplyr::filter(.data = final_sparc, !is.na(C_conc_percent))
# Glimpse it
dplyr::glimpse(final_sparc)
# Define file name
sparc_name <- "sparc-soil-p_full-data-p-sums.csv"
# Export locally
write.csv(x = final_sparc, row.names = F, na = '',
file = file.path("data", "tidy_data", sparc_name))
# Export to that folder in the Drive
googledrive::drive_upload(media = file.path("data", "tidy_data", sparc_name),
overwrite = T, path = tidy_drive)
# End ----