-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeepNN.py
268 lines (230 loc) · 8.65 KB
/
DeepNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Neural Network
#
# Author: Luke Munro
import numpy as np
import random
from sigNeuron import *
from Player import *
from Minimax import Minimax
from utils import orderMoves
from utils import makeCommands
from utils import formatMoves
from utils import onlyLegal
from utils import cleanData
from utils import assemble_state
from utils import clean_game_state
class NNet(Player):
"""Neural net class for systems with any # of hidden layers."""
def __init__(self, sizeIn, gridSize, layerList=map(int, np.loadtxt('weight_params.txt').tolist())):
Player.__init__(self, "ShallowBlue")
self.helperAI = Minimax(gridSize, 0, False)
self.sizeIn = sizeIn
self.gridSize = gridSize
self.numLayers = len(layerList)
self.layerList = layerList
self.layers = [[] for x in range(self.numLayers)]
for i in range(layerList[0]):
self.layers[0].append(Neuron(self.sizeIn+1, int(random.random()*100)))
for i, nodes in enumerate(layerList[1:]):
for x in range(nodes):
self.layers[i+1].append(Neuron(len(self.layers[i])+1, int(random.random()*100)))
self.oldUpdateVector = self.getWeights()*0
def getWeights(self):
layerWeights = []
layerWeights.append(np.zeros(shape=(self.layerList[0], self.sizeIn+1)))
for i in range(self.numLayers-1):
layerWeights.append(np.zeros(shape=(self.layerList[i+1], self.layerList[i]+1)))
for i, layer in enumerate(self.layers):
for x, node in enumerate(layer):
layerWeights[i][x] = node.getW()
return np.asarray(layerWeights)
def writeWeights(self):
layerWeights = self.getWeights()
for i, layer in enumerate(layerWeights):
np.savetxt('{0}weight{1}.txt'.format(self.gridSize, i), layer)
def loadWeights(self): # BREAKS IF YOU ONLY HAVE 1 NODE IN A LAYER
loadedWeights = []
for i in range(self.numLayers):
loadedWeights.append(np.loadtxt('{0}weight{1}.txt'.format(self.gridSize, i)))
for i, layer in enumerate(self.layers):
for x, node in enumerate(layer):
node.assignW(loadedWeights[i][x])
# -------------------- Keep both of these ----------------------------
def updateWeights(self, newLayerWeights):
for i, layer in enumerate(newLayerWeights):
np.savetxt('{0}weight{1}.txt'.format(self.gridSize, i), layer)
self.loadWeights()
def internalUpdateWeights(self, newLayerWeights): # IMPROVED UPDATEWEIGHTS
for i, layer in enumerate(self.layers):
for x, node in enumerate(layer):
node.assignW(newLayerWeights[i][x])
# ---------------------------------------------------------------------
def reg(self, Lambda): # CURRENTLY UNUSED
reg = []
for w in self.getWeights():
np.insert(w, 0, 0, axis=0) # DON'T REGULARIZE BIAS SET TO 0
reg.append(Lambda * w)
return np.asarray(reg)
def forwardPropagate(self, game_state):
a = []
z = []
a1 = cleanData(game_state)
clean_state = a1
a.append(addBias(a1))
for i in range(self.numLayers):
z.append(computeZ(self.layers[i], a[i]))
temp = sigmoid(z[i])
a.append(addBias(temp))
out = np.delete(a[self.numLayers], 0, axis=0) # REMOVE BIAS IN OUTPUT
moves = orderMoves(out)
legalMoves = onlyLegal(moves, clean_state)
next_moves = formatMoves(legalMoves, makeCommands(self.gridSize))
return next_moves[0]
def getMove(self, game_state):
# EARLY GAME - CREATE USUAL MIDGAME
total_moves = 2*(self.gridSize**2+self.gridSize)
made_moves = sum(clean_game_state(game_state))
available_moves = total_moves - made_moves
# MID GAME - CHAIN & SACRIFICE DECISIONS
NN_move = self.forwardPropagate(game_state)
# END GAME - CHECK FOR ENDING SEQUENCE
if not self.helperAI.ENDING_SEQUENCE:
self.helperAI.check_ending_chain(game_state, self.getScore())
# CHOOSING GAME STATE
if made_moves < 12:
next_move = self.helperAI.getMove(game_state, 2)
elif self.helperAI.ENDING_SEQUENCE:
next_move = self.helperAI.getMove(game_state, 3) # 3 FOR 3 + 1 CHAIN SCENARIO
else:
next_move = NN_move
return next_move
# ----------------------- Gradient Descent Algorithms ----------------------------------------------------------
# KEEP SEPERATE FOR NOW
def train(self, alpha, old_state, y): # REGULARIZATION POSSIBLY
# ----- Leave steps split for easier comprehension ------
a = []
z = []
a1 = old_state # Already cleaned
a.append(addBias(a1))
for i in range(self.numLayers):
z.append(computeZ(self.layers[i], a[i]))
temp = sigmoid(z[i])
a.append(addBias(temp))
out = np.delete(a[self.numLayers], 0, axis=0)
# print np.hstack((y, out, out-y))
# print costMeanSquared(y, out)
noBiasWeights = self.getWeights()
for i, weights in enumerate(noBiasWeights):
noBiasWeights[i] = rmBias(weights)
deltas = []
# EDIT THIS IF CHANGING COST FUNCTION
# MEAN SQUARED
# initialDelta = (out - y) * sigGradient(z[len(z)-1])
# LOG COST
initialDelta = (out - y)
deltas.append(initialDelta)
for x in range(self.numLayers-2, -1, -1):
deltaIndex = (self.numLayers-2) - x
delta = np.dot(noBiasWeights[x+1].transpose(), deltas[deltaIndex]) * sigGradient(z[x])
deltas.append(delta)
Grads = []
# REORDER DELTAS FROM FIRST LAYER TO LAST
for i, delta in enumerate(deltas[::-1]):
Grads.append(delta*a[i].transpose())
updateVector = alpha*(np.asarray(Grads))
updatedWeights = self.getWeights() - updateVector
self.internalUpdateWeights(updatedWeights)
# MOMENTUM
def trainMomentum(self, alpha, old_state, y, gamma=0.9):
a = []
z = []
a1 = old_state # Already cleaned
a.append(addBias(a1))
for i in range(self.numLayers):
z.append(computeZ(self.layers[i], a[i]))
temp = sigmoid(z[i])
a.append(addBias(temp))
out = np.delete(a[self.numLayers], 0, axis=0)
# print np.hstack((y, out, out-y))
# print costMeanSquared(y, out)
noBiasWeights = self.getWeights()
for i, weights in enumerate(noBiasWeights):
noBiasWeights[i] = rmBias(weights)
deltas = []
initialDelta = (out - y) * sigGradient(z[len(z)-1])
deltas.append(initialDelta)
for x in range(self.numLayers-2, -1, -1):
deltaIndex = (self.numLayers-2) - x # THIS IS UGLY. UR UGLY. STOP TALKING TO YOURSELF
delta = np.dot(noBiasWeights[x+1].transpose(), deltas[deltaIndex]) * sigGradient(z[x])
deltas.append(delta)
Grads = []
for i, delta in enumerate(deltas[::-1]):
Grads.append(delta*a[i].transpose())
Grads = np.asarray(Grads)
updateVector = gamma*self.oldUpdateVector + alpha*Grads
updatedWeights = self.getWeights() - updateVector
self.oldUpdateVector = updateVector
self.internalUpdateWeights(updatedWeights)
# NESTEROV ACCELERATED GRADIENT
def trainNAG(self, alpha, old_state, y, gamma=0.9):
# UPDATE WEIGHTS RERUN TO GET FUTURE GRADIENT
a = []
z = []
a1 = old_state
a.append(addBias(a1))
futureWeights = self.getWeights() - gamma*self.oldUpdateVector
for i in range(self.numLayers): # same size
zi = np.dot(futureWeights[i], a[i]).reshape(np.size(self.layers[i]), 1)
z.append(zi)
temp = sigmoid(z[i])
a.append(addBias(temp))
out = np.delete(a[self.numLayers], 0, axis=0)
# print np.hstack((y, out, out-y))
# print costMeanSquared(y, out)
noBiasWeights = self.getWeights()
for i, weights in enumerate(noBiasWeights):
noBiasWeights[i] = rmBias(weights)
deltas = []
initialDelta = (out - y) * sigGradient(z[len(z)-1])
deltas.append(initialDelta)
for x in range(self.numLayers-2, -1, -1):
deltaIndex = (self.numLayers-2) - x
delta = np.dot(noBiasWeights[x+1].transpose(), deltas[deltaIndex]) * sigGradient(z[x])
deltas.append(delta)
futureGrads = []
for i, delta in enumerate(deltas[::-1]):
futureGrads.append(delta*a[i].transpose())
futureGrads = np.asarray(futureGrads)
# GRADIENTS FOR FUTURE THETAS
updateVector = gamma*self.oldUpdateVector + alpha*(futureGrads)
updatedWeights = self.getWeights() - updateVector
self.oldUpdateVector = updateVector
self.internalUpdateWeights(updatedWeights)
# -------------------------- Computations -------------------------------
def computeZ(Nodes, X):
w = np.zeros(shape=(np.size(Nodes), np.size(X)))
for i, node in enumerate(Nodes):
w[i] = node.getW()
z = np.dot(w, X).reshape(np.size(Nodes), 1)
return z
def sigmoid(z):
return 1/(1+np.exp(-z))
def costLog(y, a):
cost = -y * np.log10(a) - (1 - y) * np.log10(1 - a)
return sum(cost)
def costMeanSquared(y, a):
cost = ((a - y)**2)/2.0
return sum(cost)
def sigGradient(z):
return sigmoid(z) * (1 - sigmoid(z))
def estimateGradlog(y, a, weights, epsilon): # DO THIS LATER.
for i in range(weights):
for i in range(weights[i]):
continue
return None
# return (costLog(y, a+epsilon) - costLog(y, a-epsilon))
# ---------------------------- Utility ----------------------------------
def addBias(aLayer): # Adds 1 to vertical vector matrix
return np.insert(aLayer, 0, 1, axis=0)
def rmBias(weightMatrix): # removes bias weight from all nodes
return np.delete(weightMatrix, 0, axis=1)