-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot.py
110 lines (90 loc) · 4.26 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import matplotlib.pyplot as plt
from helpers import EMA
import numpy as np
def plot_loss(path_to_save, train=True):
plt.rcParams.update({'font.size': 10})
with open(path_to_save + "/train_loss.txt", 'r') as f:
loss_list = [float(line) for line in f.readlines()]
if train:
title = "Train"
else:
title = "Validation"
EMA_loss = EMA(loss_list)
plt.plot(loss_list, label="loss")
plt.plot(EMA_loss, label="EMA loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.title(title + "_loss")
plt.savefig(path_to_save + f"/{title}.png")
plt.close()
def plot_prediction(title, path_to_save, src, tgt, prediction, sensor_number, index_in, index_tar):
idx_scr = index_in[0, 1:].tolist()
idx_tgt = index_tar[0].tolist()
idx_pred = [i for i in range(idx_scr[0] + 1, idx_tgt[-1])] # t2 - t61
plt.figure(figsize=(15, 6))
plt.rcParams.update({"font.size": 16})
# connect with last elemenet in src
# tgt = np.append(src[-1], tgt.flatten())
# prediction = np.append(src[-1], prediction.flatten())
# plotting
plt.plot(idx_scr, src, '-', color='blue', label='Input', linewidth=2)
plt.plot(idx_tgt, tgt, '-', color='indigo', label='Target', linewidth=2)
plt.plot(idx_pred, prediction, '--', color='limegreen', label='Forecast', linewidth=2)
# formatting
plt.grid(b=True, which='major', linestyle='solid')
plt.minorticks_on()
plt.grid(b=True, which='minor', linestyle='dashed', alpha=0.5)
plt.xlabel("Time Elapsed")
plt.ylabel("Humidity (%)")
plt.legend()
plt.title("Forecast from Sensor " + str(sensor_number[0]))
# save
plt.savefig(path_to_save + f"Prediction_{title}.png")
plt.close()
def plot_training(epoch, path_to_save, src, prediction, sensor_number, index_in, index_tar):
# idx_scr = index_in.tolist()[0]
# idx_tar = index_tar.tolist()[0]
# idx_pred = idx_scr.append(idx_tar.append([idx_tar[-1] + 1]))
idx_scr = [i for i in range(len(src))]
idx_pred = [i for i in range(1, len(prediction) + 1)]
plt.figure(figsize=(15, 6))
plt.rcParams.update({"font.size": 18})
plt.grid(b=True, which='major', linestyle='-')
plt.grid(b=True, which='minor', linestyle='--', alpha=0.5)
plt.minorticks_on()
plt.plot(idx_scr, src, 'o-.', color='blue', label='input sequence', linewidth=1)
plt.plot(idx_pred, prediction, 'o-.', color='limegreen', label='prediction sequence', linewidth=1)
plt.title("Teaching Forcing from Sensor " + str(sensor_number[0]) + ", Epoch " + str(epoch))
plt.xlabel("Time Elapsed")
plt.ylabel("Humidity (%)")
plt.legend()
plt.savefig(path_to_save + f"/Epoch_{str(epoch)}.png")
plt.close()
def plot_training_3(epoch, path_to_save, src, sampled_src, prediction, sensor_number, index_in, index_tar):
# idx_scr = index_in.tolist()[0]
# idx_tar = index_tar.tolist()[0]
# idx_pred = idx_scr.append(idx_tar.append([idx_tar[-1] + 1]))
idx_scr = [i for i in range(len(src))]
# index shift 1 for compare prediction and real of next day
idx_pred = [i for i in range(1, len(prediction) + 1)]
idx_sampled_src = [i for i in range(len(sampled_src))]
np.savetxt('src.txt', src, fmt='%f', delimiter=' ', newline='\n')
np.savetxt('prediction.txt', prediction, fmt='%f', delimiter=' ', newline='\n')
np.savetxt('sampled_src.txt', sampled_src, fmt='%f', delimiter=' ', newline='\n')
plt.figure(figsize=(15, 6))
plt.rcParams.update({"font.size": 18})
plt.grid(b=True, which='major', linestyle='-')
plt.grid(b=True, which='minor', linestyle='--', alpha=0.5)
plt.minorticks_on()
# REMOVE DROPOUT FOR THIS PLOT TO APPEAR AS EXPECTED !!
# DROPOUT INTERFERES WITH HOW THE SAMPLED SOURCES ARE PLOTTED
plt.plot(idx_sampled_src, sampled_src, 'o-.', color='red', label='sampled source', linewidth=1, markersize=10)
plt.plot(idx_scr, src, 'o-.', color='blue', label='input sequence', linewidth=1)
plt.plot(idx_pred, prediction, 'o-.', color='limegreen', label='prediction sequence', linewidth=1)
plt.title("Teaching Forcing from Sensor " + str(sensor_number[0]) + ", Epoch " + str(epoch))
plt.xlabel("Time Elapsed")
plt.ylabel("Humidity (%)")
plt.legend()
plt.savefig(path_to_save + f"/Epoch_{str(epoch)}.png")
plt.close()