-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtests.py
182 lines (167 loc) · 5.36 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
__author__ = 'marcincuber'
import pytest
from pytest import raises
import sols
import syntax
import graph as gr
import networkx as nx
import Logic_K as l
#import symbols
SET = syntax.Language(*syntax.ascii_setup)
'''
:testing parser's conversion
'''
@pytest.mark.conver
def test_convert_form1_and():
str_psi = "(~Bp ^ Dq) "
psi = syntax.parse_formula(SET, str_psi)
converted_string = ('and', ('not', ('box', 'p')), ('diamond', 'q'))
assert psi == converted_string
@pytest.mark.conver
def test_convert_form2_or():
str_psi = "(DBp V BDq) "
psi = syntax.parse_formula(SET, str_psi)
converted_string = ('or', ('diamond', ('box', 'p')), ('box',('diamond', 'q')))
assert psi == converted_string
@pytest.mark.conver
def test_convert_form3_imply():
str_psi = "(DBp > BDq) "
psi = syntax.parse_formula(SET, str_psi)
converted_string = ('imply', ('diamond', ('box', 'p')), ('box',('diamond', 'q')))
assert psi == converted_string
#test whether ambigious formulas are reporting error
@pytest.mark.conver
def test_convert_form4_imply():
str_psi = "(~Bp ^ Dq V s) "
with raises(Exception) as excinfo:
syntax.parse_formula(SET, str_psi)
assert 'Proposition should be in place!' in str(excinfo.value)
'''
:testing alpha expansion function
'''
#alpha expansion: two formulas
@pytest.mark.alphas
def test_alpha_form1():
Sets = []
alpha_expand = [('not', ('box', 'p')), ('diamond', 'q')]
str_psi = "(~Bp ^ Dq) "
psi = syntax.parse_formula(SET, str_psi)
Sets.append(sols.recursivealpha(psi))
assert Sets[0] == alpha_expand
#alpha expanstion: #alpha expansion: embedded formulas
@pytest.mark.alphas
def test_alpha_form2():
Sets = []
alpha_expand = [('not', ('box', ('and', 'p', ('diamond', 'q')))), 's', 'q', ('diamond', 't')]
str_psi = "(~B(p ^ Dq) ^ (s ^ (q ^ Dt))) "
psi = syntax.parse_formula(SET, str_psi)
Sets.append(sols.recursivealpha(psi))
assert Sets[0] == alpha_expand
'''
:testing graph functions, expanding a graph(delta,gamma) and number of graphs(beta)
'''
#alpha formulas tested
@pytest.mark.graph
def test_graph_form1():
Graphs = []
Sets = []
G = nx.MultiDiGraph()
str_psi = "(~Bp ^ Dq) "
psi = syntax.parse_formula(SET, str_psi)
Sets.append(sols.recursivealpha(psi))
gr.create_graph_K(G,Sets)
Graphs.append(G)
#check if there is new graph
assert len(Graphs) == 1
#check if the graph has correct formula at node 1
assert G.node[1] == [('not', ('box', 'p')), ('diamond', 'q')]
#alpha, delta and gamma formulas tested
@pytest.mark.graph
def test_graph_form2():
Graphs = []
Sets = []
formulas_in = {}
formulas_in[1] = []
G = nx.MultiDiGraph()
str_psi = "(Bp ^ Dq) "
psi = syntax.parse_formula(SET, str_psi)
Sets.append(sols.recursivealpha(psi))
gr.create_graph_K(G,Sets)
Graphs.append(G)
#apply delta expansion
l.delta_node_solve(G, 1 ,formulas_in)
#check if node 1 has correct formula
assert G.node[1] == [('box', 'p'), ('diamond', 'q')]
#check new node contains expanded delta and gamma formulas
assert G.node[2] == ['q','p']
#beta formula tested
@pytest.mark.graph
def test_graph_form3():
l.Graphs = []
Sets = []
formulas_in = {}
formulas_in[1] = []
G = nx.MultiDiGraph()
str_psi = "(Bp V Dq)"
psi = syntax.parse_formula(SET, str_psi)
Sets.append(sols.recursivealpha(psi))
gr.create_graph_K(G,Sets)
l.Graphs.append(G)
#apply beta expansion
l.beta_node_solve(G, 1 ,formulas_in)
#check if there are 2 graphs
assert len(l.Graphs) == 2
#check if there are correct formulas in node 1
assert l.Graphs[1].node[1] == [('diamond', 'q')]
assert l.Graphs[0].node[1] == [('box', 'p')]
#beta,gamma and delta formulas tested
@pytest.mark.graph
def test_graph_form4():
l.Graphs = []
Sets = []
formulas_in = {}
formulas_in[1] = []
G = nx.MultiDiGraph()
str_psi = "(Bp > (Dq ^ Bt))"
psi = syntax.parse_formula(SET, str_psi)
Sets.append(sols.recursivealpha(psi))
gr.create_graph_K(G,Sets)
l.Graphs.append(G)
#apply beta expansion
l.beta_node_solve(G, 1 ,formulas_in)
l.delta_node_solve(l.Graphs[0],1,formulas_in)
l.delta_node_solve(l.Graphs[1],1,formulas_in)
#check if there are 2 graphs
assert len(l.Graphs) == 2
#check node 1 of graph 1 and graph 2
assert l.Graphs[0].node[1] == [('not',('box', 'p'))]
assert l.Graphs[1].node[1] == [('diamond', 'q'),('box','t')]
#check node 2 of graph 1
assert l.Graphs[0].node[2] == [('not', 'p')]
#check node 2 of graph 2
assert l.Graphs[1].node[2] == ['q','t']
@pytest.mark.consist
# False- consistent True- inconsistent
def test_consistent_form1():
answer = True
psi = [('and','p', 'q'), ('not', 'q'), 'p']
result = sols.inconsistent(psi)
assert answer == result
@pytest.mark.consist
def test_consistent_form2():
answer = True
psi = [('not',('or','q', 'p')), 'p']
result = sols.inconsistent(psi)
assert answer == result
@pytest.mark.consist
def test_consistent_form3():
answer = True
psi = [('not',('imply', 'p', ('not','q'))), ('not','q')]
result = sols.inconsistent(psi)
assert answer == result
@pytest.mark.consist
def test_consistent_form4():
answer = False
psi = [('not',('or', ('not','p'), 'q')), ('not',('imply','p','q'))]
result = sols.inconsistent(psi)
assert answer == result