forked from bitcraze/crazyflie-lib-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_ippe.py
408 lines (309 loc) · 12.5 KB
/
_ippe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import numpy as np
# Copyright (c) 2016 The Python Packaging Authority (PyPA)
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
# of the Software, and to permit persons to whom the Software is furnished to do
# so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# This code has been copied from https://github.com/royxue/ippe_py and slightly modified
# to avoid a dependency to Open CV and to collect all functionality in one file.
# The code uses a coordinate system as defined by Open CV.
# The code is based on the paper
# @article{ year={2014}, issn={0920-5691}, journal={International Journal of Computer Vision}, volume={109}, number={3}, doi={10.1007/s11263-014-0725-5}, title={Infinitesimal Plane-Based Pose Estimation}, url={http://dx.doi.org/10.1007/s11263-014-0725-5}, publisher={Springer US}, keywords={Plane; Pose; SfM; PnP; Homography}, author={Collins, Toby and Bartoli, Adrien}, pages={252-286}, language={English} } # noqa
def mat_run(U, Q, hEstMethod='DLT'):
"""
The solution to Perspective IPPE with point correspondences computed
between points in world coordinates on the plane z=0, and normalised points in the
camera's image.
Parameters
----------
U: 2xN or 3xN matrix holding the model points in world coordinates. If U
is 2xN then the points are defined in world coordinates on the plane z=0
Q: 2xN matrix holding the points in the image. These are in normalised
pixel coordinates. That is, the effects of the camera's intrinsic matrix
and lens distortion are corrected, so that the Q projects with a perfect
pinhole model.
hEstMethod: the homography estimation method, by default Direct Linear Transform is used,
from Peter Kovesi's implementation at http://www.csse.uwa.edu.au/~pk.
Return
---------
IPPEPoses: A Python dictionary that contains 2 sets of pose solution from IPPE including rotation matrix
translation matrix, and reprojection error
"""
if hEstMethod not in ['Harker', 'DLT']:
print('hEstMethod Error')
# Inputs shape checking
assert (U.shape[0] == 2 or U.shape[0] == 3)
assert (U.shape[1] == Q.shape[1])
assert (Q.shape[0] == 2)
n = U.shape[1]
modelDims = U.shape[0]
Uuncentred = U
if modelDims == 2:
# Zero center the model points
# Zero center the model points
Pbar = np.vstack((np.mean(U, axis=1, keepdims=True), 0))
U[0, :] = U[0, :]-Pbar[0]
U[1, :] = U[1, :]-Pbar[1]
else:
# Rotate the model points onto the plane z=0 and zero center them
Pbar = np.mean(U[:1])
MCenter = np.eye(4)
MCenter[0:3, -1] = -Pbar
U_ = MCenter[0:3, :].dot(np.vstack((U, np.ones((1, U.shape[1])))))
modelRotation, sigs, _ = np.linalg.svd(U_.dot(U_.T))
modelRotation = modelRotation.T
modelRotation = np.hstack((np.vstack((modelRotation, np.array([0, 0, 0]))), np.array([[0], [0], [0], [1]])))
Mcorrective = modelRotation.dot(MCenter)
U = Mcorrective[0:2, :].dot(np.vstack((U, np.ones((1, U.shape[1])))))
# TODO: Add support for Harker function
# Compute the model to image homography
if hEstMethod == 'DLT':
_U = np.vstack((U, np.ones((1, n))))
_Q = np.vstack((Q, np.ones((1, n))))
H = homography2d(_U, _Q)
H = H/H[2, 2]
# Compute the Jacobian J of the homography at (0,0)
J = np.zeros((2, 2))
J[0, 0] = H[0, 0]-H[2, 0]*H[0, 2]
J[0, 1] = H[0, 1]-H[2, 1]*H[0, 2]
J[1, 0] = H[1, 0]-H[2, 0]*H[1, 2]
J[1, 1] = H[1, 1]-H[2, 1]*H[1, 2]
# Compute rotate solution
v = np.vstack((H[0, 2], H[1, 2]))
[R1, R2, _] = IPPE_dec(v, J)
# compute the translation solution
t1_ = estT(R1, U, Q)
t2_ = estT(R2, U, Q)
if modelDims == 2:
t1 = np.hstack((R1, t1_)).dot(np.vstack((-Pbar, 1)))
t2 = np.hstack((R2, t2_)).dot(np.vstack((-Pbar, 1)))
else:
M1 = np.hstack((R1, t1_))
M1 = np.vstack((M1, np.array([0, 0, 0, 1])))
M2 = np.hstack((R2, t2_))
M2 = np.vstack((M2, np.array([0, 0, 0, 1])))
M1 = M1.dot(Mcorrective)
M2 = M2.dot(Mcorrective)
R1 = M1[0:3, 0:3]
R2 = M2[0:3, 0:3]
t1 = M1[0:3, -1]
t2 = M2[0:3, -1]
[reprojErr1, reprojErr2] = computeReprojErrs(R1, R2, t1, t2, Uuncentred, Q)
if reprojErr1 > reprojErr2:
[R1, R2, t1, t2, reprojErr1, reprojErr2] = swapSolutions(R1, R2, t1, t2, reprojErr1, reprojErr2)
IPPEPoses = {}
IPPEPoses['R1'] = R1
IPPEPoses['t1'] = t1
IPPEPoses['R2'] = R2
IPPEPoses['t2'] = t2
IPPEPoses['reprojError1'] = reprojErr1
IPPEPoses['reprojError2'] = reprojErr2
return IPPEPoses
def computeReprojErrs(R1, R2, t1, t2, U, Q):
"""
Computes the reprojection errors for the two solutions generated by IPPE.
"""
# transform model points to camera coordinates and project them onto the image
if U.shape[0] == 2:
PCam1 = R1[:, 0:2].dot(U)
PCam2 = R2[:, 0:2].dot(U[0:2, :])
else:
PCam1 = R1.dot(U)
PCam2 = R2.dot(U)
PCam1[0, :] = PCam1[0, :] + t1[0]
PCam1[1, :] = PCam1[1, :] + t1[1]
PCam1[2, :] = PCam1[2, :] + t1[2]
PCam2[0, :] = PCam2[0, :] + t2[0]
PCam2[1, :] = PCam2[1, :] + t2[1]
PCam2[2, :] = PCam2[2, :] + t2[2]
Qest_1 = PCam1/np.vstack((PCam1[2, :], PCam1[2, :], PCam1[2, :]))
Qest_2 = PCam2/np.vstack((PCam2[2, :], PCam2[2, :], PCam2[2, :]))
# Compute reprojection errors:
reprojErr1 = np.linalg.norm(Qest_1[0:2, :]-Q)
reprojErr2 = np.linalg.norm(Qest_2[0:2, :]-Q)
return [reprojErr1, reprojErr2]
def estT(R, psPlane, Q):
"""
Computes the least squares estimate of translation given the rotation solution.
"""
if psPlane.shape[0] == 2:
psPlane = np.vstack((psPlane, np.zeros((1, psPlane.shape[1]))))
Ps = R.dot(psPlane)
numPts = psPlane.shape[1]
Ax = np.zeros((numPts, 3))
bx = np.zeros((numPts, 1))
Ay = np.zeros((numPts, 3))
by = np.zeros((numPts, 1))
Ax[:, 0] = 1
Ax[:, 2] = -Q[0, :]
bx[:] = (Q[0, :]*Ps[2, :] - Ps[0, :]).reshape(4, 1)
Ay[:, 1] = 1
Ay[:, 2] = -Q[1, :]
by[:] = (Q[1, :]*Ps[2, :] - Ps[1, :]).reshape(4, 1)
A = np.vstack((Ax, Ay))
b = np.vstack((bx, by))
AtA = A.conj().T.dot(A)
Atb = A.conj().T.dot(b)
Ainv = IPPE_inv33(AtA)
t = Ainv.dot(Atb)
return t
def swapSolutions(R1_, R2_, t1_, t2_, reprojErr1_, reprojErr2_):
"""
Swap the solutions
"""
R1 = R2_
t1 = t2_
reprojErr1 = reprojErr2_
R2 = R1_
t2 = t1_
reprojErr2 = reprojErr1_
return [R1, R2, t1, t2, reprojErr1, reprojErr2]
def IPPE_inv33(A):
"""
Computes the inverse of a 3x3 matrix, assuming it is full-rank.
"""
a11 = A[0, 0]
a12 = A[0, 1]
a13 = A[0, 2]
a21 = A[1, 0]
a22 = A[1, 1]
a23 = A[1, 2]
a31 = A[2, 0]
a32 = A[2, 1]
a33 = A[2, 2]
Ainv = np.vstack((np.array([a22*a33 - a23*a32, a13*a32 - a12*a33, a12*a23 - a13*a22]),
np.array([a23*a31 - a21*a33, a11*a33 - a13*a31, a13*a21 - a11*a23]),
np.array([a21*a32 - a22*a31, a12*a31 - a11*a32, a11*a22 - a12*a21])))
Ainv = Ainv/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)
return Ainv
def IPPE_dec(v, J):
"""
Calculate 2 solutions to rotate from J Jacobian of the model-to-plane homography H
Parameters
----------
v: 2x1 vector holding the point in normalised pixel coordinates which maps by H^-1 to
the point (0,0,0) in world coordinates.
J: 2x2 Jacobian matrix of H at (0,0).
Return
---------
R1: 3x3 Rotation matrix (first solution)
R2: 3x3 Rotation matrix (second solution)
gamma: The positive real-valued inverse-scale factor.
"""
# Calculate the correction rotation Rv
t = np.linalg.norm(v)
if t < np.finfo(float).eps:
# the plane is fronto-parallel to the camera, so set the corrective rotation Rv to identity.
# There will be only one solution to pose.
Rv = np.eye(3)
else:
# the plane is not fronto-parallel to the camera, so set the corrective rotation Rv
s = np.linalg.norm(np.vstack((v, 1)))
costh = 1./s
sinth = np.sqrt(1-1./s**2)
Kcrs = 1./t*(np.vstack([np.hstack([np.zeros((2, 2)), v]), np.hstack([-v.T, np.zeros((1, 1))])]))
Rv = np.eye(3) + sinth*Kcrs + (1.-costh)*Kcrs.dot(Kcrs)
# Set up 2x2 SVD decomposition
B = np.hstack((np.eye(2), -v)).dot(Rv[:, 0:2])
dt = B[0, 0]*B[1, 1] - B[0, 1]*B[1, 0]
Binv = np.vstack([np.hstack([B[1, 1]/dt, -B[0, 1]/dt]), np.hstack([-B[1, 0]/dt, B[0, 0]/dt])])
A = Binv.dot(J)
# Compute the largest singular value of A
AAT = A.dot(A.T)
gamma = np.sqrt(1./2*(AAT[0, 0] + AAT[1, 1] + np.sqrt((AAT[0, 0]-AAT[1, 1])**2 + 4*AAT[0, 1]**2)))
# Reconstruct the full rotation matrices
R22_tild = A/gamma
h = np.eye(2)-R22_tild.T.dot(R22_tild)
b = np.vstack((np.sqrt(h[0, 0]), np.sqrt(h[1, 1])))
if h[0, 1] < 0:
b[1] = -b[1]
v1 = np.vstack((R22_tild[:, 0:1], np.array([b[0]])))
v2 = np.vstack((R22_tild[:, 1:2], np.array([b[1]])))
d = IPPE_crs(v1, v2)
c = d[0:2]
a = d[2]
R1 = Rv.dot(np.vstack((np.hstack((R22_tild, c)), np.hstack((b.conj().T, np.array([a]))))))
R2 = Rv.dot(np.vstack((np.hstack((R22_tild, -c)), np.hstack((-b.conj().T, np.array([a]))))))
return [R1, R2, gamma]
def IPPE_crs(v1, v2):
"""
3D cross product for vectors v1 and v2
"""
v3 = np.zeros((3, 1))
v3[0] = v1[1]*v2[2]-v1[2]*v2[1]
v3[1] = v1[2]*v2[0]-v1[0]*v2[2]
v3[2] = v1[0]*v2[1]-v1[1]*v2[0]
return v3
def homography2d(x1, x2):
"""
Direct Linear Transform
Input:
x1: 3xN set of homogeneous points
x2: 3xN set of homogeneous points such that x1<->x2
Returns:
H: the 3x3 homography such that x2 = H*x1
"""
[x1, T1] = normalise2dpts(x1)
[x2, T2] = normalise2dpts(x2)
Npts = x1.shape[1]
A = np.zeros((3*Npts, 9))
O = np.zeros(3) # noqa
for i in range(0, Npts):
X = x1[:, i].T
x = x2[0, i]
y = x2[1, i]
w = x2[2, i]
A[3*i, :] = np.array([O, -w*X, y*X]).reshape(1, 9)
A[3*i+1, :] = np.array([w*X, O, -x*X]).reshape(1, 9)
A[3*i+2, :] = np.array([-y*X, x*X, O]).reshape(1, 9)
[U, D, Vh] = np.linalg.svd(A)
V = Vh.T
H = V[:, 8].reshape(3, 3)
H = np.linalg.solve(T2, H)
H = H.dot(T1)
return H
def normalise2dpts(pts):
"""
Function translates and normalises a set of 2D homogeneous points
so that their centroid is at the origin and their mean distance from
the origin is sqrt(2). This process typically improves the
conditioning of any equations used to solve homographies, fundamental
matrices etc.
Inputs:
pts: 3xN array of 2D homogeneous coordinates
Returns:
newpts: 3xN array of transformed 2D homogeneous coordinates. The
scaling parameter is normalised to 1 unless the point is at
infinity.
T: The 3x3 transformation matrix, newpts = T*pts
"""
if pts.shape[0] != 3:
print('Input shoud be 3')
finiteind = np.nonzero(abs(pts[2, :]) > np.spacing(1))
# if len(finiteind) != pts.shape[1]:
# print('Some points are at infinity')
dist = []
for i in finiteind:
pts[0, i] = pts[0, i]/pts[2, i]
pts[1, i] = pts[1, i]/pts[2, i]
pts[2, i] = 1
c = np.mean(pts[0:2, i].T, axis=0).T
newp1 = pts[0, i]-c[0]
newp2 = pts[1, i]-c[1]
dist.append(np.sqrt(newp1**2 + newp2**2))
meandist = np.mean(dist[:])
scale = np.sqrt(2)/meandist
T = np.array([[scale, 0, -scale*c[0]], [0, scale, -scale*c[1]], [0, 0, 1]])
newpts = T.dot(pts)
return [newpts, T]