-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathfacetracking.hpp
294 lines (257 loc) · 11.4 KB
/
facetracking.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
//
// Created by markson zhang on 2019-03-20.
//
#include <iostream>
#include <stdio.h>
#include <array>
#include <vector>
#include <opencv2/opencv.hpp>
#include <tvm/runtime/module.h>
#include <tvm/runtime/registry.h>
#include <tvm/runtime/packed_func.h>
#include "stdlib.h"
#include <iostream>
#include <array>
#include <vector>
#include <opencv2/opencv.hpp>
#include <tvm/runtime/module.h>
#include <tvm/runtime/registry.h>
#include <tvm/runtime/packed_func.h>
#include <dlpack/dlpack.h>
#include <tvm/runtime/module.h>
#include <tvm/runtime/registry.h>
#include <tvm/runtime/packed_func.h>
#include <fstream>
#include <iterator>
#include <algorithm>
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "RetinaFace/anchor_generator.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "RetinaFace/config.h"
#include "RetinaFace/tools.h"
#include "RetinaFace/ulsMatF.h"
using namespace std;
using namespace cv;
// Tunable Parameters
const int avg_face = 1;
const int minSize = 60;
const int stage = 4;
const int input_width = 640;
const int input_height = 480;
const cv::Size frame_size = Size(input_width, input_height);
const float ratio_x = input_width / 640.;
const float ratio_y = input_height / 480.;
const string prefix = "/Users/marksonzhang/Project/Face-Recognition-Cpp/models/macos";
const char arcface_model[30] = "y1-arcface-emore_115";
struct _FaceInfo {
/**
* Structure _FaceInfo
* face_count: the count of total face
* face_details: the [confidence, x, y, w, h, eyes, nose, cheek] coordinators
*/
int face_count;
std::vector<std::array<double, 15>> face_details;
// double face_details[][15];
};
struct RetinaOutput {
std::vector<Anchor> result;
cv::Point2f ratio;
};
class MTCNN;
/**
* Class of TVM model implementation, it contains the model definition module and the inference function.
* the inference function is the forward
*/
class FR_MFN_Deploy {
private:
std::unique_ptr<tvm::runtime::Module> handle;
public:
FR_MFN_Deploy(std::string modelFolder) {
tvm::runtime::Module mod_syslib = tvm::runtime::Module::LoadFromFile(
modelFolder + format("/deploy_lib_%s.so", arcface_model));
//load graph
std::ifstream json_in(modelFolder + format("/deploy_graph_%s.json", arcface_model));
std::string json_data((std::istreambuf_iterator<char>(json_in)), std::istreambuf_iterator<char>());
json_in.close();
int device_type = kDLCPU;
int device_id = 0;
// get global function module for graph runtime
tvm::runtime::Module mod = (*tvm::runtime::Registry::Get("tvm.graph_runtime.create"))(json_data, mod_syslib,
device_type, device_id);
this->handle.reset(new tvm::runtime::Module(mod));
//load param
std::ifstream params_in(modelFolder + format("/deploy_param_%s.params", arcface_model), std::ios::binary);
std::string params_data((std::istreambuf_iterator<char>(params_in)), std::istreambuf_iterator<char>());
params_in.close();
TVMByteArray params_arr;
params_arr.data = params_data.c_str();
params_arr.size = params_data.length();
tvm::runtime::PackedFunc load_params = mod.GetFunction("load_params");
load_params(params_arr);
}
cv::Mat forward(cv::Mat inputImageAligned) {
//mobilefacnet preprocess has been written in graph.
cv::Mat tensor = cv::dnn::blobFromImage(inputImageAligned, 1.0, cv::Size(112, 112), cv::Scalar(0, 0, 0), true);
//convert uint8 to float32 and convert to RGB via opencv dnn function
DLTensor *input;
constexpr int dtype_code = kDLFloat;
constexpr int dtype_bits = 32;
constexpr int dtype_lanes = 1;
constexpr int device_type = kDLCPU;
constexpr int device_id = 0;
constexpr int in_ndim = 4;
const int64_t in_shape[in_ndim] = {1, 3, 112, 112};
TVMArrayAlloc(in_shape, in_ndim, dtype_code, dtype_bits, dtype_lanes, device_type, device_id, &input);//
TVMArrayCopyFromBytes(input, tensor.data, 112 * 3 * 112 * 4);
tvm::runtime::Module *mod = (tvm::runtime::Module *) handle.get();
tvm::runtime::PackedFunc set_input = mod->GetFunction("set_input");
set_input("data", input);
tvm::runtime::PackedFunc run = mod->GetFunction("run");
run();
tvm::runtime::PackedFunc get_output = mod->GetFunction("get_output");
tvm::runtime::NDArray res = get_output(0);
cv::Mat vector(128, 1, CV_32F);
memcpy(vector.data, res->data, 128 * 4);
cv::Mat _l2;
cv::multiply(vector, vector, _l2);
float l2 = cv::sqrt(cv::sum(_l2).val[0]);
vector = vector / l2;
TVMArrayFree(input);
return vector;
}
};
class RetinaFaceDeploy {
private:
std::unique_ptr<tvm::runtime::Module> handle;
public:
RetinaFaceDeploy(std::string modelFolder) {
// tvm module for compiled functions
tvm::runtime::Module mod_syslib = tvm::runtime::Module::LoadFromFile(modelFolder + "/mnet.25.x86.cpu.so");
// json graph
std::ifstream json_in(modelFolder + "/mnet.25.x86.cpu.json", std::ios::in);
std::string json_data((std::istreambuf_iterator<char>(json_in)), std::istreambuf_iterator<char>());
json_in.close();
int dtype_code = kDLFloat;
int dtype_bits = 32;
int dtype_lanes = 1;
int device_type = kDLCPU;//kDLGPU
int device_id = 0;
// get global function module for graph runtime
tvm::runtime::Module mod = (*tvm::runtime::Registry::Get("tvm.graph_runtime.create"))(json_data, mod_syslib,
device_type, device_id);
this->handle.reset(new tvm::runtime::Module(mod));
// parameters in binary
std::ifstream params_in(modelFolder + "/mnet.25.x86.cpu.params", std::ios::binary);
std::string params_data((std::istreambuf_iterator<char>(params_in)), std::istreambuf_iterator<char>());
params_in.close();
// parameters need to be TVMByteArray type to indicate the binary data
TVMByteArray params_arr;
params_arr.data = params_data.c_str();
params_arr.size = params_data.length();
tvm::runtime::PackedFunc load_params = mod.GetFunction("load_params");
load_params(params_arr);
}
RetinaOutput forward(cv::Mat image) {
constexpr int dtype_code = kDLFloat;
constexpr int dtype_bits = 32;
constexpr int dtype_lanes = 1;
constexpr int device_type = kDLCPU;//kDLGPU
constexpr int device_id = 0;
DLTensor *x;
int in_ndim = 4;
int in_c = 3, in_h = 480, in_w = 640;
int64_t in_shape[4] = {1, in_c, in_h, in_w};
TVMArrayAlloc(in_shape, in_ndim, dtype_code, dtype_bits, dtype_lanes, device_type, device_id, &x);
int64_t w1 = ceil(in_w / 32.0), w2 = ceil(in_w / 16.0), w3 = ceil(in_w / 8.0), h1 = ceil(
in_h / 32.0), h2 = ceil(in_h / 16.0), h3 = ceil(in_h / 8.0);
int out_num = (w1 * h1 + w2 * h2 + w3 * h3) * (4 + 8 + 20);
tvm::runtime::Module *mod = (tvm::runtime::Module *) handle.get();
int total_input = 3 * in_w * in_h;
float *data_x = (float *) malloc(total_input * sizeof(float));
//float* y_iter = (float*)malloc(out_num*4);
if (!image.data)
printf("load error");
//input data
cv::Mat resizeImage;
cv::resize(image, resizeImage, cv::Size(in_w, in_h), cv::INTER_AREA);
cv::Mat input_mat;
resizeImage.convertTo(input_mat, CV_32FC3);
//cv::cvtColor(input_mat, input_mat, cv::COLOR_BGR2RGB);
cv::Mat split_mat[3];
cv::split(input_mat, split_mat);
memcpy(data_x, split_mat[2].ptr<float>(), input_mat.cols * input_mat.rows * sizeof(float));
memcpy(data_x + input_mat.cols * input_mat.rows, split_mat[1].ptr<float>(),
input_mat.cols * input_mat.rows * sizeof(float));
memcpy(data_x + input_mat.cols * input_mat.rows * 2, split_mat[0].ptr<float>(),
input_mat.cols * input_mat.rows * sizeof(float));
TVMArrayCopyFromBytes(x, data_x, total_input * sizeof(float));
// get the function from the module(set input data)
tvm::runtime::PackedFunc set_input = mod->GetFunction("set_input");
set_input("data", x);
// get the function from the module(run it)
tvm::runtime::PackedFunc run = mod->GetFunction("run");
run();
tvm::runtime::PackedFunc get_output = mod->GetFunction("get_output");
std::vector<AnchorGenerator> ac(_feat_stride_fpn.size());
for (int i = 0; i < _feat_stride_fpn.size(); ++i) {
int stride = _feat_stride_fpn[i];
ac[i].Init(stride, anchor_cfg[stride], false);
}
std::vector<Anchor> proposals;
proposals.clear();
int64_t w[3] = {w1, w2, w3};
int64_t h[3] = {h1, h2, h3};
int64_t out_size[9] = {w1 * h1 * 4, w1 * h1 * 8, w1 * h1 * 20, w2 * h2 * 4, w2 * h2 * 8, w2 * h2 * 20,
w3 * h3 * 4, w3 * h3 * 8, w3 * h3 * 20};
int out_ndim = 4;
int64_t out_shape[9][4] = {{1, 4, h1, w1},
{1, 8, h1, w1},
{1, 20, h1, w1},
{1, 4, h2, w2},
{1, 8, h2, w2},
{1, 20, h2, w2},
{1, 4, h3, w3},
{1, 8, h3, w3},
{1, 20, h3, w3}};
DLTensor *y[9];
for (int i = 0; i < 9; i++)
TVMArrayAlloc(out_shape[i], out_ndim, dtype_code, dtype_bits, dtype_lanes, device_type, device_id, &y[i]);
for (int i = 0; i < 9; i += 3) {
get_output(i, y[i]);
get_output(i + 1, y[i + 1]);
get_output(i + 2, y[i + 2]);
ulsMatF clsMat(w[i / 3], h[i / 3], 4);
ulsMatF regMat(w[i / 3], h[i / 3], 8);
ulsMatF ptsMat(w[i / 3], h[i / 3], 20);
TVMArrayCopyToBytes(y[i], clsMat.m_data, out_size[i] * sizeof(float));
TVMArrayCopyToBytes(y[i + 1], regMat.m_data, out_size[i + 1] * sizeof(float));
TVMArrayCopyToBytes(y[i + 2], ptsMat.m_data, out_size[i + 2] * sizeof(float));
ac[i / 3].FilterAnchor(clsMat, regMat, ptsMat, proposals);
// std::cout << "proposals:" << proposals.size() << std::endl;
}
// nms
std::vector<Anchor> result;
nms_cpu(proposals, nms_threshold, result);
// printf("final proposals: %ld\n", result.size());
// free buffer
free(data_x);
data_x = nullptr;
TVMArrayFree(x);
for (int i = 0; i < 9; i++)
TVMArrayFree(y[i]);
RetinaOutput output_;
output_.result = result;
output_.ratio.x = ratio_x;
output_.ratio.y = ratio_y;
return output_;
}
};
int MTCNNTracking(MTCNN &detector, FR_MFN_Deploy &deploy);
int RetinaFaceTracking(RetinaFaceDeploy &deploy_track, FR_MFN_Deploy &deploy_rec);
int RetinaFace(RetinaFaceDeploy &deploy_track);
int MTCNNDetection(MTCNN &detector);
int InferenceOnce(RetinaFaceDeploy &deploy_track, FR_MFN_Deploy &deploy_rec);