-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactivations.py
222 lines (185 loc) · 4.84 KB
/
activations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from abc import ABC, abstractmethod
import numpy as np
import matplotlib.pyplot as plt
class Activation(ABC):
"""
An abstract class which represents activation functions which can be applied
to a layer in a neural network.
"""
_name = "activation name"
@abstractmethod
def apply(self,x):
"""
Evaluate activation function.
"""
pass
@abstractmethod
def derivative(self,x):
"""
Evaluate derivative of activation function.
"""
pass
@abstractmethod
def __str__(self):
pass
@staticmethod
def funcFromStr(name):
functions = {
"Identity": Identity(),
"Sigmoid": Sigmoid(),
"Softmax": Softmax(),
"ReLU": ReLU(),
"Tanh": Tanh(),
}
if "LeakyReLU" not in name:
return functions[name]
else:
# loading LeakyReLU
_, eps = name.split("_")
return LeakyReLU(float(eps))
def _plot(self):
"""
Plot the graph of the activation function.
"""
x = np.linspace(-10, 10, 100)
plt.plot(x, self.apply(x))
plt.xlabel("x")
plt.ylabel("f(x)")
plt.title(self._name)
#plt.savefig(self._name.split()[0] + ".svg", transparent = True)
plt.show()
class Identity(Activation):
"""
Identity function
"""
_name = "Identity function"
def apply(self,x):
r"""
.. math::
f(x) := x
"""
return x
def derivative(self,x):
r"""
.. math::
f'(x) := 1
"""
return np.ones(x.shape)
def __str__(self):
return "Identity"
class Sigmoid(Activation):
"""
.. image:: img/Sigmoid.svg
:alt: sigmoid
:align: center
"""
_name = "Sigmoid function"
def apply(self,x):
r"""
.. math::
\sigma(x) := \frac{1}{1 + \exp(-x)}
"""
return 1. / (1. + np.exp(-x))
def derivative(self,x):
r"""
.. math::
\sigma '(x) :=\sigma(x) \cdot (1 - \sigma(x))
"""
return self.apply(x) * (1. - self.apply(x))
def __str__(self):
return "Sigmoid"
class Tanh(Activation):
"""
.. image:: img/Tanh.svg
:alt: tanh
:align: center
"""
_name = "Tanh - Hyperbolic tangent"
def apply(self,x):
r"""
.. math::
\tanh(x) := \frac{\sinh(x)}{\cosh(x)}
"""
return np.tanh(x)
def derivative(self,x):
r"""
.. math::
\tanh'(x) := 1 - \tanh^2(x)
"""
return 1. - np.power(np.tanh(x),2)
def __str__(self):
return "Tanh"
class ReLU(Activation):
"""
.. image:: img/ReLU.svg
:alt: relu
:align: center
"""
_name = "ReLU - Rectified linear unit"
def apply(self,x):
r"""
.. math::
\text{relu}(x) := \max(0,x)
"""
return x * (x > 0)
def derivative(self,x):
r"""
.. math::
\text{relu}'(x) :=
\begin{cases}
0 & \text{for } x \leq 0 \\
1 & \text{else} \\
\end{cases}
"""
return 1. * (x > 0)
def __str__(self):
return "ReLU"
class LeakyReLU(Activation):
"""
.. image:: img/LeakyReLU.svg
:alt: leaky_relu
:align: center
"""
_name = "LeakyReLU - Leaky rectified linear unit"
epsilon = 0
def __init__(self,epsilon=0.01):
self.epsilon = epsilon
super().__init__()
def apply(self,x):
r"""
.. math::
\text{leaky_relu}(x) := \max(\varepsilon x,x) \text{ with } \varepsilon \ll 1
"""
return np.where(x > 0, x, x * self.epsilon)
def derivative(self,x):
r"""
.. math::
\text{leaky_relu}'(x) :=
\begin{cases}
\varepsilon & \text{for } x \leq 0 \\
1 & \text{else} \\
\end{cases}
"""
return np.where(x > 0, 1., self.epsilon)
def __str__(self):
return f"LeakyReLU_{self.epsilon}"
class Softmax(Activation):
"""
Softmax function
"""
_name = "Softmax function"
def apply(self,x):
r"""
.. math::
\text{softmax}(x_i) := \frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)}
"""
tmp = np.exp(x - np.max(x, axis=0)) # - np.max(x) prevents under-/overflow
return tmp / tmp.sum(axis=0)
def derivative(self,x):
#reference https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/
return self.apply(x) * (1. - self.apply(x))
def __str__(self):
return "Softmax"
if __name__ == "__main__":
for func in [Identity(),Sigmoid(),Tanh(),ReLU(),LeakyReLU(),Softmax()]:
func._plot()