-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
150 lines (121 loc) · 4.55 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from abc import ABC, abstractmethod
import numpy as np
import numpy.matlib as matlib
import copy
import os
import json
from activations import Sigmoid, Softmax, Activation
from optimizer import Adam, SGD
class Layer(ABC):
"""
An abstract class which represents layers
which make up a neural network.
"""
@abstractmethod
def feedforward(self, input):
"""
Forward propagate the input through the layer.
"""
pass
@abstractmethod
def backward(self, lastGradient):
"""
Backward propagate the gradient through the layer.
"""
pass
@abstractmethod
def numParameters(self):
"""
Get the number of pararameters in this layer.
"""
pass
@abstractmethod
def save(self, folder):
"""
Save layer in a given folder.
"""
pass
@abstractmethod
def load(self, folder):
"""
Load a layer from a given folder.
"""
pass
class Dense(Layer):
"""
Dense Layer: input and output layer are fully connected.
"""
def __init__(self, inputDim = 1, outputDim = 1, activation = Sigmoid(), optimizer = Adam()):
self.inputDim = inputDim
self.outputDim = outputDim
# set the activation function
self.activation = activation
# set optimizer
self.weightOptimizer = copy.copy(optimizer)
self.biasOptimizer = copy.copy(optimizer)
# randomly initialize the weight and biases
limit = np.sqrt(6 / (inputDim + outputDim)) # xavier uniform initializer
self.weight = np.random.uniform(-limit, limit, (outputDim, inputDim))
self.bias = np.zeros(outputDim)
# trainable decides whether weight and biases are trained in backward pass
self.trainable = True # Layers can also be frozen !
def feedforward(self, input):
self.input = input
self.z = np.dot(self.weight, self.input) + matlib.repmat(self.bias, input.shape[1], 1).T
self.a = self.activation.apply(self.z)
return self.a
def backward(self, lastGradient, outputLayer = False, updateParameters = True):
oldWeight = np.copy(self.weight)
if not outputLayer:
lastGradient *= self.activation.derivative(self.z)
if self.trainable and updateParameters:
# layer is NOT frozen, weights and biases should be changed
gradWeight = np.dot(lastGradient, self.input.T)
gradBias = np.sum(lastGradient, axis=1)
# update weights and biases with optimizer
self.weightOptimizer.optimize(self.weight, gradWeight)
self.biasOptimizer.optimize(self.bias, gradBias)
self.gradient = np.dot(oldWeight.T, lastGradient)
return self.gradient
def numParameters(self):
weightShape = self.weight.shape
return weightShape[0]*weightShape[1] + self.bias.shape[0]
def setBatchSize(self, batchSize):
self.batchSize = batchSize
self.weightOptimizer.setLearningFactor(self.batchSize)
self.biasOptimizer.setLearningFactor(self.batchSize)
def __str__(self):
out = f"DENSE {self.inputDim} -> {self.outputDim} [{self.activation}]\n"
tmp = len(out) * "-" + "\n"
out = tmp + out + tmp
out += f"Total parameters: {self.numParameters()} \n"
out += f"---> WEIGHTS: {self.weight.shape}\n"
out += f"---> BIASES: {self.bias.shape}\n"
out += tmp
return out
def save(self, folder):
if not os.path.exists(folder):
os.mkdir(folder)
np.save(f"{folder}/weight.npy", self.weight)
np.save(f"{folder}/bias.npy", self.bias)
# save supplementary data about layer
data = {}
data["inputDim"] = self.inputDim
data["outputDim"] = self.outputDim
data["activation"] = str(self.activation)
with open(f"{folder}/dense.json", "w") as file:
json.dump(data, file)
def load(self, folder):
# deduce all import parameters from saved file
try:
# load weights & biases
self.weight = np.load(f"{folder}/weight.npy")
self.bias = np.load(f"{folder}/bias.npy")
# load neurons, layers, activation_functions
with open(f"{folder}/dense.json", "r") as file:
data = json.load(file)
self.inputDim = data["inputDim"]
self.outputDim = data["outputDim"]
self.activation = Activation.funcFromStr(data["activation"])
except Exception as e:
print(e)