-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
72 lines (59 loc) · 2.19 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from abc import ABC, abstractmethod
import numpy as np
class Loss(ABC):
"""
An abstract class which represents loss functions which can be applied
to the output layer in a neural network.
"""
@abstractmethod
def apply(self,x):
"""
Evaluate loss function.
"""
pass
@abstractmethod
def derivative(self,x):
"""
Evaluate derivative of loss function.
"""
pass
class MSE(Loss):
"""
Mean Squared Error (MSE)
"""
def apply(self,y,a):
r"""
.. math::
\text{Loss}(X;W,b) := \frac{1}{2|X|} \sum_{x \in X} ||NN(x;W,b) - y(x)||^2
with the input batch X, the weights W, the biases b,
y(x) the desired output and NN(x;W,b) the output from the NN
when x is inputted.
"""
temp = a - y
return (1. / (2. * y.shape[1])) * np.sum(temp * temp)
def derivative(self,y,a):
r"""
.. math::
\nabla_{NN} \text{Loss}(X;W,b) = \frac{1}{|X|} \sum_{x \in X} \left( NN(x;W,b) - y(x) \right)
"""
return (1. / y.shape[1]) * np.sum(a - y, axis=1).reshape((y.shape[0],1))
class CrossEntropy(Loss):
"""
Categorical Crossentropy
"""
def apply(self,y,a):
#reference https://medium.com/@pdquant/all-the-backpropagation-derivatives-d5275f727f60#3ee0
a = np.clip(a,1e-10,1-1e-10) #preventing division by zero
return (-1. / y.shape[1]) * np.sum(y*np.log(a) +(np.ones(y.shape)-y)*np.log(np.ones(a.shape)-a))
def derivative(self,y,a):
r"""
This is the derivative of the CrossEntropy loss with a softmax layer as input.
In https://deepnotes.io/softmax-crossentropy#derivative-of-cross-entropy-loss-with-softmax,
it has been derived that
.. math::
\nabla_{z} \text{Loss}(X;W,b) = \frac{1}{|X|} \left( z(X;W,b) - y(x) \right)
where z is the output of the last layer of the neural network, before it has been
activated with the Softmax function.
"""
a = np.clip(a,1e-10,1-1e-10) #preventing division by zero
return (1. / y.shape[1]) * (np.divide(-y,a)+np.divide(np.ones(y.shape)-y,np.ones(a.shape)-a))