Skip to content

Commit 6d38521

Browse files
committed
Fix typos
1 parent 958b33a commit 6d38521

9 files changed

+47
-46
lines changed

README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@ The best way to run the tests is in an interactive python session:
7070

7171
```python
7272
import matplotlib
73-
matplotib.use('agg')
73+
matplotlib.use('agg')
7474
from probscale import tests
7575
tests.test()
7676
```

docs/tutorial/closer_look_at_plot_pos.ipynb

+3-3
Original file line numberDiff line numberDiff line change
@@ -137,7 +137,7 @@
137137
"metadata": {},
138138
"source": [
139139
"Now let's create probability plots on both Weibull and normal probability scales.\n",
140-
"Additionally, we'll compute the plotting positions two different but commone ways for each plot.\n",
140+
"Additionally, we'll compute the plotting positions two different but common ways for each plot.\n",
141141
"\n",
142142
"First, in blue circles, we'll show the data with Weibull (α=0, β=0) plotting positions.\n",
143143
"Weibull plotting positions are commonly use in fields such as hydrology and water resources engineering.\n",
@@ -179,12 +179,12 @@
179179
"cell_type": "markdown",
180180
"metadata": {},
181181
"source": [
182-
"This demostrates that the different formulations of the plotting positions vary most at the extreme values of the dataset. \n",
182+
"This demonstrates that the different formulations of the plotting positions vary most at the extreme values of the dataset. \n",
183183
"\n",
184184
"### Hazen plotting positions\n",
185185
"\n",
186186
"Next, let's compare the Hazen/Type 5 (α=0.5, β=0.5) formulation to Cunnane.\n",
187-
"Hazen plotting positions (shown as red triangles) represet a piece-wise linear interpolation of the emperical cumulative distribution function of the dataset.\n",
187+
"Hazen plotting positions (shown as red triangles) represent a piece-wise linear interpolation of the empirical cumulative distribution function of the dataset.\n",
188188
"\n",
189189
"Given the values of α and β=0.5 vary only slightly from the Cunnane values, the plotting position predictably are similar."
190190
]

docs/tutorial/closer_look_at_viz.ipynb

+8-8
Original file line numberDiff line numberDiff line change
@@ -123,7 +123,7 @@
123123
"source": [
124124
"### Quantile plots\n",
125125
"\n",
126-
"Quantile plots are similar to propbabilty plots.\n",
126+
"Quantile plots are similar to probability plots.\n",
127127
"The main differences is that plotting positions are converted into quantiles or $Z$-scores based on a probability distribution.\n",
128128
"The default distribution is the standard-normal distribution.\n",
129129
"Using a different distribution is covered further down.\n",
@@ -215,16 +215,16 @@
215215
"cell_type": "markdown",
216216
"metadata": {},
217217
"source": [
218-
"In these case of P-P plots and simple Q-Q plots, the `probplot` function doesn't offer much convencience compared to writing raw matplotlib commands.\n",
218+
"In these case of P-P plots and simple Q-Q plots, the `probplot` function doesn't offer much convenience compared to writing raw matplotlib commands.\n",
219219
"However, this changes when you start making probability plots and using more advanced options.\n",
220220
"\n",
221221
"### Probability plots\n",
222222
"\n",
223223
"Visually, the curve of plots on probability and quantile scales should be the same.\n",
224-
"The difference is that the axis ticks are placed and labeled based on non-exceedance probailities rather than the more abstract quantiles of the distribution.\n",
224+
"The difference is that the axis ticks are placed and labeled based on non-exceedance probabilities rather than the more abstract quantiles of the distribution.\n",
225225
"\n",
226226
"Unsurprisingly, a picture explains this much better.\n",
227-
"Let's build off of the previos plot:"
227+
"Let's build off of the previous plot:"
228228
]
229229
},
230230
{
@@ -384,7 +384,7 @@
384384
" plottype='qq',\n",
385385
" probax='x',\n",
386386
" problabel='Theoretical Quantiles',\n",
387-
" datalabel='Emperical Quantiles',\n",
387+
" datalabel='Empirical Quantiles',\n",
388388
" scatter_kws=dict(label='Bill amounts')\n",
389389
")\n",
390390
"\n",
@@ -541,7 +541,7 @@
541541
"cell_type": "raw",
542542
"metadata": {},
543543
"source": [
544-
"The ``probplot`` function calls the :func:`viz.plot_plos` function to compute each dataset's plotting positions.\n",
544+
"The ``probplot`` function calls the :func:`viz.plot_pos` function to compute each dataset's plotting positions.\n",
545545
"\n",
546546
"You should read that function's docstring for more detailed information.\n",
547547
"But the high-level overview is that there are a couple of parameters (``alpha`` and ``beta``) that you can tweak in the plotting positions calculation.\n",
@@ -571,7 +571,7 @@
571571
"\n",
572572
"fig, (ax1, ax2, ax3) = pyplot.subplots(figsize=(6, 6), nrows=3,\n",
573573
" sharey=True, sharex=True)\n",
574-
"fig = probscale.probplot(x, ax=ax1, problabel='Cunnuane (default) plotting positions',\n",
574+
"fig = probscale.probplot(x, ax=ax1, problabel='Cunnane (default) plotting positions',\n",
575575
" **common_opts)\n",
576576
"\n",
577577
"fig = probscale.probplot(x, ax=ax2, problabel='Weibull plotting positions',\n",
@@ -596,7 +596,7 @@
596596
"By default, the data series assumes that `linestyle='none'` and `marker='o'`.\n",
597597
"These can be overwritten through `scatter_kws`\n",
598598
"\n",
599-
"Revisting the previous example, we can customize it like so:"
599+
"Revisiting the previous example, we can customize it like so:"
600600
]
601601
},
602602
{

docs/tutorial/getting_started.ipynb

+5-5
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
"\n",
1616
"`conda install --channel=conda-forge mpl-probscale`\n",
1717
"\n",
18-
"Fairly recent builds of the development verions are available on my channel:\n",
18+
"Fairly recent builds of the development version are available on my channel:\n",
1919
"\n",
2020
"`conda install --channel=conda-forge mpl-probscale`\n",
2121
"\n",
@@ -126,7 +126,7 @@
126126
"cell_type": "markdown",
127127
"metadata": {},
128128
"source": [
129-
"### Probabilty Scales "
129+
"### Probability Scales "
130130
]
131131
},
132132
{
@@ -311,8 +311,8 @@
311311
"cell_type": "markdown",
312312
"metadata": {},
313313
"source": [
314-
"### Percentile and Quanitile plots\n",
315-
"For convenience, you can do percetile and quantile plots with the same function."
314+
"### Percentile and Quantile plots\n",
315+
"For convenience, you can do percentile and quantile plots with the same function."
316316
]
317317
},
318318
{
@@ -369,7 +369,7 @@
369369
" .pipe(seaborn.FacetGrid, hue='sex', col='time', row='smoker', margin_titles=True, aspect=1., size=4)\n",
370370
" .map(probscale.probplot, 'pct', bestfit=True, scatter_kws=dict(alpha=0.75), probax='y')\n",
371371
" .add_legend()\n",
372-
" .set_ylabels('Non-Exceedance Probabilty')\n",
372+
" .set_ylabels('Non-Exceedance Probability')\n",
373373
" .set_xlabels('Tips as percent of total bill')\n",
374374
" .set(ylim=(0.5, 99.5), xlim=(0, 100))\n",
375375
")"

probscale/formatters.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ def _sig_figs(cls, x, n, expthresh=5, forceint=False):
1515
x : int or float
1616
The number you want to format.
1717
n : int
18-
The number of significan figures it should have.
18+
The number of significant figures it should have.
1919
expthresh : int, optional (default = 5)
2020
The absolute value of the order of magnitude at which numbers
2121
are formatted in exponential notation.
@@ -97,7 +97,7 @@ def __call__(self, x, pos=None):
9797

9898
class PctFormatter(_FormatterMixin):
9999
"""
100-
Formatter class for MPL axes to display probalities as percentages.
100+
Formatter class for MPL axes to display probabilities as percentages.
101101
102102
Examples
103103
--------
@@ -119,7 +119,7 @@ class PctFormatter(_FormatterMixin):
119119

120120
class ProbFormatter(_FormatterMixin):
121121
"""
122-
Formatter class for MPL axes to display probalities as decimals.
122+
Formatter class for MPL axes to display probabilities as decimals.
123123
124124
Examples
125125
--------

probscale/probscale.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -13,8 +13,8 @@
1313

1414
class _minimal_norm(object):
1515
"""
16-
A basic implmentation of a normal distribution, minimally
17-
API-complient with scipt.stats.norm
16+
A basic implementation of a normal distribution, minimally
17+
API-compliant with scipy.stats.norm
1818
1919
"""
2020

@@ -71,7 +71,7 @@ class ProbScale(ScaleBase):
7171
The axis whose scale will be set.
7272
dist : scipy.stats probability distribution, optional
7373
The distribution whose ppf/cdf methods should be used to compute
74-
the tick positions. By default, a minimal implimentation of the
74+
the tick positions. By default, a minimal implementation of the
7575
``scipy.stats.norm`` class is used so that scipy is not a
7676
requirement.
7777

probscale/transforms.py

+8-8
Original file line numberDiff line numberDiff line change
@@ -59,18 +59,18 @@ def __init__(self, dist, as_pct=True, out_of_bounds='mask'):
5959

6060
class ProbTransform(_ProbTransformMixin):
6161
"""
62-
MPL axes tranform class to convert quantiles to probabilities
62+
MPL axes transform class to convert quantiles to probabilities
6363
or percents.
6464
6565
Parameters
6666
----------
6767
dist : scipy.stats distribution
68-
The distribution whose ``cdf`` and ``pdf`` methods wiil set the
68+
The distribution whose ``cdf`` and ``pdf`` methods will set the
6969
scale of the axis.
7070
as_pct : bool, optional (True)
7171
Toggles the formatting of the probabilities associated with the
72-
tick labels as percentanges (0 - 100) or fractions (0 - 1).
73-
out_of_bounds : string, optionals ('mask' or 'clip')
72+
tick labels as percentages (0 - 100) or fractions (0 - 1).
73+
out_of_bounds : string, optional ('mask' or 'clip')
7474
Determines how data outside the range of valid values is
7575
handled. The default behavior is to mask the data.
7676
Alternatively, the data can be clipped to values arbitrarily
@@ -93,18 +93,18 @@ def inverted(self):
9393

9494
class QuantileTransform(_ProbTransformMixin):
9595
"""
96-
MPL axes tranform class to convert probabilities or percents to
96+
MPL axes transform class to convert probabilities or percents to
9797
quantiles.
9898
9999
Parameters
100100
----------
101101
dist : scipy.stats distribution
102-
The distribution whose ``cdf`` and ``pdf`` methods wiil set the
102+
The distribution whose ``cdf`` and ``pdf`` methods will set the
103103
scale of the axis.
104104
as_pct : bool, optional (True)
105105
Toggles the formatting of the probabilities associated with the
106-
tick labels as percentanges (0 - 100) or fractions (0 - 1).
107-
out_of_bounds : string, optionals ('mask' or 'clip')
106+
tick labels as percentages (0 - 100) or fractions (0 - 1).
107+
out_of_bounds : string, optional ('mask' or 'clip')
108108
Determines how data outside the range of valid values is
109109
handled. The default behavior is to mask the data.
110110
Alternatively, the data can be clipped to values arbitrarily

probscale/validate.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@ def axes_object(ax):
2424
def axis_name(axis, axname):
2525
"""
2626
Checks that an axis name is in ``{'x', 'y'}``. Raises an error on
27-
an invalid value. Returns the lower case verion of valid values.
27+
an invalid value. Returns the lower case version of valid values.
2828
2929
"""
3030

@@ -39,7 +39,7 @@ def axis_name(axis, axname):
3939
def fit_argument(arg, argname):
4040
"""
4141
Checks that an axis options is in ``{'x', y', 'both', None}``.
42-
Raises an error on an invalid value. Returns the lower case verion
42+
Raises an error on an invalid value. Returns the lower case version
4343
of valid values.
4444
4545
"""
@@ -62,7 +62,7 @@ def axis_type(axtype):
6262
- *qq* - quantile axis
6363
- *prob* - probability axis
6464
65-
Raises an error on an invalid value. Returns the lower case verion
65+
Raises an error on an invalid value. Returns the lower case version
6666
of valid values.
6767
6868
"""

probscale/viz.py

+13-12
Original file line numberDiff line numberDiff line change
@@ -28,13 +28,13 @@ def probplot(data, ax=None, plottype='prob', dist=None, probax='x',
2828
plottype : string (default = 'prob')
2929
Type of plot to be created. Options are:
3030
31-
- 'prob': probabilty plot
31+
- 'prob': probability plot
3232
- 'pp': percentile plot
3333
- 'qq': quantile plot
3434
3535
3636
dist : scipy distribution, optional
37-
A distribtion to compute the scale's tick positions. If not
37+
A distribution to compute the scale's tick positions. If not
3838
specified, a standard normal distribution will be used.
3939
4040
probax : string, optional (default = 'x')
@@ -46,7 +46,8 @@ def probplot(data, ax=None, plottype='prob', dist=None, probax='x',
4646
respectively.
4747
4848
datascale : string, optional (default = 'log')
49-
Scale for the other axis that is not
49+
Scale for the other axis that is not the probability (or
50+
quantile) axis.
5051
5152
bestfit : bool, optional (default is False)
5253
Specifies whether a best-fit line should be added to the plot.
@@ -81,7 +82,7 @@ def probplot(data, ax=None, plottype='prob', dist=None, probax='x',
8182
specified within ``scatter_kws`` and ``line_kws``.
8283
8384
.. note::
84-
Users should not specify this parameter. It is inteded to
85+
Users should not specify this parameter. It is intended to
8586
only be used by seaborn when operating within a
8687
``FacetGrid``.
8788
@@ -92,7 +93,7 @@ def probplot(data, ax=None, plottype='prob', dist=None, probax='x',
9293
data series label should be specified within ``scatter_kws``.
9394
9495
.. note::
95-
Users should not specify this parameter. It is inteded to
96+
Users should not specify this parameter. It is intended to
9697
only be used by seaborn when operating within a
9798
``FacetGrid``.
9899
@@ -108,7 +109,7 @@ def probplot(data, ax=None, plottype='prob', dist=None, probax='x',
108109
- q : array of quantiles
109110
- x, y : arrays of data passed to function
110111
- xhat, yhat : arrays of modeled data plotted in best-fit line
111-
- res : array of coeffcients of the best-fit line.
112+
- res : array of coefficients of the best-fit line.
112113
113114
See also
114115
--------
@@ -269,7 +270,7 @@ def plot_pos(data, postype=None, alpha=None, beta=None, exceedance=False):
269270
Compute the plotting positions for a dataset. Heavily borrows from
270271
``scipy.stats.mstats.plotting_positions``.
271272
272-
A plottiting position is defined as: ``(i-alpha)/(n+1-alpha-beta)``
273+
A plotting position is defined as: ``(i-alpha)/(n+1-alpha-beta)``
273274
where:
274275
275276
- ``i`` is the rank order
@@ -326,7 +327,7 @@ def plot_pos(data, postype=None, alpha=None, beta=None, exceedance=False):
326327
generally slopes from the lower left to the upper right,
327328
and show the probability that a new observation will be
328329
less than a given point. By contrast, exceedance plots show
329-
the probabilty that a new observation will be greater than
330+
the probability that a new observation will be greater than
330331
a given point.
331332
332333
Returns
@@ -384,7 +385,7 @@ def plot_pos(data, postype=None, alpha=None, beta=None, exceedance=False):
384385

385386

386387
def _set_prob_limits(ax, probax, N):
387-
""" Sets the limits of a probabilty axis based the number of point.
388+
""" Sets the limits of a probability axis based the number of point.
388389
389390
Parameters
390391
----------
@@ -436,7 +437,7 @@ def fit_line(x, y, xhat=None, fitprobs=None, fitlogs=None, dist=None,
436437
Defines how data should be transformed. Valid values are
437438
'x', 'y', or 'both'. If using ``fitprobs``, variables should
438439
be expressed as a percentage, i.e.,
439-
for a probablility transform, data will be transformed with
440+
for a probability transform, data will be transformed with
440441
``lambda x: dist.ppf(x / 100.)``.
441442
For a log transform, ``lambda x: numpy.log(x)``.
442443
Take care to not pass the same value to both ``fitlogs`` and
@@ -446,7 +447,7 @@ def fit_line(x, y, xhat=None, fitprobs=None, fitlogs=None, dist=None,
446447
A fully-spec'd scipy.stats distribution-like object
447448
such that ``dist.ppf`` and ``dist.cdf`` can be called. If not
448449
provided, defaults to a minimal implementation of
449-
``scipt.stats.norm``.
450+
``scipy.stats.norm``.
450451
451452
estimate_ci : bool, optional (False)
452453
Estimate and draw a confidence band around the best-fit line
@@ -466,7 +467,7 @@ def fit_line(x, y, xhat=None, fitprobs=None, fitlogs=None, dist=None,
466467
Dictionary of linear fit results. Keys include:
467468
468469
- slope
469-
- intersept
470+
- intercept
470471
- yhat_lo (lower confidence interval of the estimated y-vals)
471472
- yhat_hi (upper confidence interval of the estimated y-vals)
472473

0 commit comments

Comments
 (0)