Skip to content

Commit d49619d

Browse files
committed
Merge pull request #12 from phobson/cleanup-imports
Cleanup imports
2 parents f309b1d + 0b599fa commit d49619d

35 files changed

+462
-402
lines changed

README.md

+9
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,15 @@ Real probability scales for matplotlib
44
[![Build Status](https://travis-ci.org/phobson/mpl-probscale.svg)](https://travis-ci.org/phobson/mpl-probscale)
55
[![Coverage Status](https://coveralls.io/repos/phobson/mpl-probscale/badge.svg?branch=master&service=github)](https://coveralls.io/github/phobson/mpl-probscale?branch=master)
66

7+
[Sphinx Docs](http://phobson.github.io/mpl-probscale/)
8+
9+
## Installation
10+
11+
`conda install mpl-probscale --channel=phobson`
12+
13+
14+
## Quick start
15+
716
Simply importing `probscale` lets you use probability scales in your matplotlib figures:
817

918
```python

docs/index.rst

+9
Original file line numberDiff line numberDiff line change
@@ -15,6 +15,15 @@ mpl-probscale: Real probability scales for matplotlib
1515

1616
https://github.com/phobson/mpl-probscale
1717

18+
Installation
19+
------------
20+
21+
``conda install mpl-probscale --channel=phobson``
22+
23+
24+
Quickstart
25+
----------
26+
1827
Simply importing ``probscale`` lets you use probability scales in your matplotlib figures:
1928

2029
.. code-block:: python

docs/tutorial/getting_started.ipynb

+5-6
Original file line numberDiff line numberDiff line change
@@ -178,19 +178,18 @@
178178
"cell_type": "code",
179179
"execution_count": null,
180180
"metadata": {
181-
"collapsed": false,
182-
"scrolled": false
181+
"collapsed": false
183182
},
184183
"outputs": [],
185184
"source": [
186185
"import paramnormal\n",
187186
"seaborn.set(style='ticks', context='notebook', rc=clear_bkgd)\n",
188187
"\n",
189-
"fig, (ax1, ax2, ax3, ax4) = pyplot.subplots(figsize=(8, 5), nrows=4)\n",
188+
"fig, (ax1, ax2, ax3, ax4) = pyplot.subplots(figsize=(8, 6), nrows=4)\n",
190189
"\n",
191190
"ax1.set_xscale('prob')\n",
192191
"ax1.set_xlim(left=2, right=98)\n",
193-
"ax1.set_xlabel('Normal probability scale')\n",
192+
"ax1.set_xlabel('Normal probability scale, as percents')\n",
194193
"ax1.set_yticks([])\n",
195194
"\n",
196195
"beta1 = paramnormal.beta(α=3, β=2)\n",
@@ -206,7 +205,7 @@
206205
"ax3.set_yticks([])\n",
207206
"\n",
208207
"ax4.set_xlim(left=2, right=98)\n",
209-
"ax4.set_xticks(ax1.get_xticks()[14:-14])\n",
208+
"ax4.set_xticks(ax1.get_xticks()[12:-12])\n",
210209
"ax4.set_xlabel('Linear scale (for reference)')\n",
211210
"ax4.set_yticks([])\n",
212211
"\n",
@@ -354,4 +353,4 @@
354353
},
355354
"nbformat": 4,
356355
"nbformat_minor": 0
357-
}
356+
}

probscale/__init__.py

+5
Original file line numberDiff line numberDiff line change
@@ -1 +1,6 @@
1+
from matplotlib import scale
2+
13
from .viz import *
4+
from .probscale import ProbScale
5+
6+
scale.register_scale(ProbScale)

probscale/formatters.py

+96
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,96 @@
1+
import numpy as numpy
2+
from matplotlib.ticker import Formatter
3+
4+
5+
class _FormatterMixin(Formatter):
6+
@classmethod
7+
def _sig_figs(cls, x, n, expthresh=5, forceint=False):
8+
""" Formats a number with the correct number of sig figs.
9+
10+
Parameters
11+
----------
12+
x : int or float
13+
The number you want to format.
14+
n : int
15+
The number of significan figures it should have.
16+
expthresh : int, optional (default = 5)
17+
The absolute value of the order of magnitude at which numbers
18+
are formatted in exponential notation.
19+
forceint : bool, optional (default is False)
20+
If true, simply returns int(x)
21+
22+
Returns
23+
-------
24+
formatted : str
25+
The formatted number as a string
26+
27+
Examples
28+
--------
29+
>>> print(_sig_figs(1247.15, 3))
30+
1250
31+
>>> print(_sig_figs(1247.15, 7))
32+
1247.150
33+
34+
"""
35+
36+
# return a string value unaltered
37+
if isinstance(x, str) or x == 0.0:
38+
out = str(x)
39+
40+
# check on the number provided
41+
elif x is not None and not numpy.isinf(x) and not numpy.isnan(x):
42+
43+
# check on the _sig_figs
44+
if n < 1:
45+
raise ValueError("number of sig figs (n) must be greater than zero")
46+
47+
elif forceint:
48+
out = '{:,.0f}'.format(x)
49+
50+
# logic to do all of the rounding
51+
else:
52+
order = numpy.floor(numpy.log10(numpy.abs(x)))
53+
54+
if (-1.0 * expthresh <= order <= expthresh):
55+
decimal_places = int(n - 1 - order)
56+
57+
if decimal_places <= 0:
58+
out = '{0:,.0f}'.format(round(x, decimal_places))
59+
60+
else:
61+
fmt = '{0:,.%df}' % decimal_places
62+
out = fmt.format(x)
63+
64+
else:
65+
decimal_places = n - 1
66+
fmt = '{0:.%de}' % decimal_places
67+
out = fmt.format(x)
68+
69+
# with NAs and INFs, just return 'NA'
70+
else:
71+
out = 'NA'
72+
73+
return out
74+
75+
def __call__(self, x, pos=None):
76+
if x < (10 / self.factor):
77+
out = self._sig_figs(x, 1)
78+
elif x <= (99 / self.factor):
79+
out = self._sig_figs(x, 2)
80+
else:
81+
order = numpy.ceil(numpy.round(numpy.abs(numpy.log10(self.top - x)), 6))
82+
out = self._sig_figs(x, order + self.offset)
83+
84+
return '{}'.format(out)
85+
86+
87+
class PctFormatter(_FormatterMixin):
88+
factor = 1.0
89+
offset = 2
90+
top = 100
91+
92+
93+
class ProbFormatter(_FormatterMixin):
94+
factor = 100.0
95+
offset = 0
96+
top = 1

0 commit comments

Comments
 (0)