-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtracklets.py
1454 lines (1128 loc) · 50.4 KB
/
tracklets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
dir_path = '/Users/mholman/Dropbox/support/'
import os
import bisect
import pickle
from collections import defaultdict
from collections import Counter
import scipy
import numpy as np
import healpy as hp
import spiceypy as spice
import MPC_library
import kepcart as kc
# Load a few spice kernels
spice.furnsh(dir_path+'/kernels/MetaK_new.txt')
Observatories = MPC_library.Observatory(dir_path+'ObsCodes.txt')
ObservatoryXYZ = Observatories.ObservatoryXYZ
au2m = 149597870700
au_km = au2m/1000.
# This routine checks the 80-character input line to see if it contains a special character (S, R, or V) that indicates a 2-line
# record.
def is_two_line(line):
note2 = line[14]
obsCode = line[77:80]
return note2=='S' or note2=='R' or note2=='V'
def satellite_pos(second_line):
obsCode = second_line[77:81].rstrip()
flag = second_line[32:34]
if flag == '1 ' or flag == '2 ':
pos = [float(second_line[34]+second_line[35:45].strip()),
float(second_line[46]+second_line[47:57].strip()),
float(second_line[58]+second_line[59:69].strip())]
pos = np.array(pos)
else:
pos = None
return obsCode, pos
# This routine opens and reads filename, separating the records into those in the 1-line and 2-line formats.
# The 2-line format lines are merged into single 160-character records for processing line-by-line.
def split_MPC_file(filename):
filename_1_line = filename.rstrip('.txt')+"_1_line.txt"
filename_2_line = filename.rstrip('.txt')+"_2_line.txt"
with open(filename_1_line, 'w') as f1_out, open(filename_2_line, 'w') as f2_out:
line1=None
with open(filename, 'r') as f:
for line in f:
if is_two_line(line):
line1=line
continue
if line1 != None:
merged_lines = line1.rstrip('\n') + line
f2_out.write(merged_lines)
line1 = None
else:
f1_out.write(line)
line1 = None
# Grab a line of ATLAS data and convert it to values
def convertATLAS(line):
line = line.split()
objName, jd_utc, raDeg, decDeg, mag = line[0:5]
filt, raSig, decSig, magSig, obsCode, prob = line[5:]
jd_utc = 2400000.5 + float(jd_utc)
timeStr = 'JD %.6lf' % (jd_utc)
jd_tdb = spice.j2000() + spice.str2et(timeStr)/(24.*60.*60.)
raDeg = float(raDeg)
decDeg = float(decDeg)
mag = float(mag)
filt = filt.strip()
raSig = float(raSig)
decSig = float(decSig)
magSig = float(magSig)
obsCode = obsCode.strip()
prob = float(prob)
return objName, jd_tdb, raDeg, decDeg, mag, filt, raSig, decSig, magSig, obsCode, prob
def mpctime2isotime(mpctimeStr, digits=4):
yr, mn, dy = MPC_library.parseDate(mpctimeStr)
dy = float(dy)
frac_day, day = np.modf(dy)
frac_hrs, hrs = np.modf(frac_day*24)
frac_mins, mins = np.modf(frac_hrs*60)
secs = frac_mins*60
if np.round(secs, digits)>=60.0:
secs = np.round(secs, digits) - 60
if secs<0.0:
secs = 0.0
mins += 1
if mins>=60:
mins -= 60
hrs += 1
if hrs>=24:
hrs -= 24
day += 1 # Could mess up the number of days in the month
formatStr = '%4s-%2s-%02dT%02d:%02d:%02.' + str(digits)+'f'
isoStr = formatStr % (yr, mn, day, hrs, mins, secs)
return isoStr
def mpctime2et(mpctimeStr, digits=4):
isoStr = mpctime2isotime(mpctimeStr, digits=digits)
return spice.str2et(isoStr)
# Grab a line of obs80 data and convert it to values
# this assumes the object is numbered.
def convertObs80(line):
objName = line[0:5]
provDesig = line[5:12]
disAst = line[12:13]
note1 = line[13:14]
note2 = line[14:15]
dateObs = line[15:32]
RA = line[32:44]
Dec = line[44:56]
mag = line[65:70]
filt = line[70:71]
obsCode = line[77:80]
if objName.strip()!='':
objID = objName
elif provDesig.strip()!='':
objID = provDesig
else:
raise Exception('No object identifier' + objName + provDesig)
t = mpctime2et(dateObs)
jd_tdb = spice.j2000() + t/(24*60*60)
raDeg, decDeg = MPC_library.RA2degRA(RA), MPC_library.Dec2degDec(Dec)
return objID, jd_tdb, raDeg, decDeg, mag, filt, 0.0, 0.0, 0.0, obsCode, 0.0
# Grab a line of obs80 data and convert it to values
# this assumes the object is numbered.
def convertJWST(line, desig='', provID='K15G56K', obsCode='274'):
fields = line.split()
objID = provID
mjd_mid = float(fields[2])
geopos = np.array(fields[5:8], dtype=float)
RA = fields[8]
Dec = fields[9]
jd_utc = "JD %.7lf" % (2400000.5 + mjd_mid)
t = spice.str2et(jd_utc)
jd_tdb = spice.j2000() + t/(24*60*60)
raDeg, decDeg = MPC_library.RA2degRA(RA), MPC_library.Dec2degDec(Dec)
return objID, jd_tdb, raDeg, decDeg, obsCode, geopos
def barycentricObservatory(et, obsCode):
# et is JPL internal time
# Get the barycentric position of Earth
pos, _= spice.spkpos('EARTH', et, 'J2000', 'NONE', 'SSB')
# Get the matrix that rotates from the Earth's equatorial body fixed frame to the J2000 equatorial frame.
m=spice.pxform('ITRF93', 'J2000', et)
# Get the MPC's unit vector from the geocenter to
# the observatory
obsVec = Observatories.ObservatoryXYZ[obsCode]
obsVec = np.array(obsVec)
# Carry out the rotation and scale
mVec = np.dot(m, obsVec)*6378.137 # This JPL's quoted Earth radius.
return pos+mVec
from functools import cache
@cache
def geocentricObservatory(et, obsCode):
# et is JPL's internal time
# Get the matrix that rotates from the Earth's equatorial
# body fixed frame to the J2000 equatorial frame.
#
# For dates before 1972-01-1 use the older model
# otherwise the more accurate model
current = spice.str2et('1972-01-01')
if et < current:
m=spice.pxform('IAU_EARTH', 'J2000', et)
else:
m=spice.pxform('ITRF93', 'J2000', et)
# Get the MPC's unit vector from the geocenter to
# the observatory
obsVec = Observatories.ObservatoryXYZ[obsCode]
obsVec = np.array(obsVec)
# Carry out the rotation and scale
mVec = np.dot(m, obsVec)* 6378.137
return mVec
# Grab a line of obs80 data and convert it to values
# this assumes the object is numbered.
def convertObs80_trksub(line):
trksub = line[0:12]
disAst = line[12:13]
note1 = line[13:14]
note2 = line[14:15]
dateObs = line[15:32]
RA = line[32:44]
Dec = line[44:56]
mag = line[65:70]
filt = line[70:71]
obsCode = line[77:80]
jd_utc = MPC_library.date2JD(dateObs)
raDeg, decDeg = MPC_library.RA2degRA(RA), MPC_library.Dec2degDec(Dec)
return trksub, jd_utc, raDeg, decDeg, mag, filt, 0.0, 0.0, 0.0, obsCode, 0.0
# Grab a line of obs80 data and convert it to values
# this assumes the object has a provID or a trkSub
def convertITF80(line):
objName = line[0:5]
provDesig = line[5:12]
disAst = line[12:13]
note1 = line[13:14]
note2 = line[14:15]
dateObs = line[15:32]
RA = line[32:44]
Dec = line[44:56]
mag = line[65:70]
filt = line[70:71]
obsCode = line[77:80]
t = mpctime2et(dateObs)
jd_tdb = spice.j2000() + t/(24*60*60)
raDeg, decDeg = MPC_library.RA2degRA(RA), MPC_library.Dec2degDec(Dec)
return provDesig, jd_tdb, raDeg, decDeg, mag, filt, 0.0, 0.0, 0.0, obsCode, 0.0
def get_date(line):
return line[15:32]
# This rotation is taking things from equatorial to ecliptic
rot_mat = MPC_library.rotate_matrix(-MPC_library.Constants.ecl)
def equatorial_to_ecliptic(v, rot_mat=rot_mat):
return np.dot(v, rot_mat.T)
def ecliptic_to_equatorial(v, rot_mat=rot_mat.T):
return np.dot(v, rot_mat.T)
# This could be streamlined to avoid repeated calculation of the same quantities.
# This assumes that v1 is a unit vector.
def get_residuals(v1, v2):
x, y, z = v1
#x = v1[:,0]
#y = v1[:,1]
#z = v1[:,2]
delta = np.arcsin(z)
alpha = np.arctan2(y, x)
sina = np.sin(alpha)
cosa = np.cos(alpha)
sind = np.sin(delta)
cosd = np.cos(delta)
A = np.array((-sina, cosa, 0.0))
D = np.array((-sind*cosa, -sind*sina, cosd))
return np.array([np.dot(v2, A), np.dot(v2, D)])
# This routine opens and reads filename, separating the records into those in the 1-line and 2-line formats.
# The 2-line format lines are merged into single 160-character records for processing line-by-line.
def merge_MPC_file(filename, new_filename, comment_char='#'):
with open(new_filename, 'w') as f1_out:
line1=None
with open(filename, 'r') as f:
for line in f:
if line.startswith(comment_char):
continue
if is_two_line(line):
line1=line
continue
if line1 != None:
merged_lines = line1.rstrip('\n') + line
f1_out.write(merged_lines)
line1 = None
else:
f1_out.write(line)
line1 = None
def format_astrometry(filename, h_filename, readfunc=convertObs80, ecliptic=False, jd_tdb_min=-1e9, baryhelio='bary'):
with open(h_filename, 'w') as outfile:
with open(filename, 'r') as f:
# skip the header line. This should be generalized.
#f.readline()
outstring = "#trackletID obsCode mag filter jd_tdb x_target y_target z_target x_obs y_obs z_obs \n"
outfile.write(outstring)
for i, line in enumerate(f):
#if line.strip().startswith('/'):
# continue
if line[14] in ['R', 'x', 'X', 'v', 'V']:
continue
objName, jd_tdb, raDeg, decDeg, mag, filt, RA_sig, Dec_sig, mag_sig, obsCode, prob = readfunc(line[0:80])
if jd_tdb<jd_tdb_min:
continue
xt = np.cos(decDeg*np.pi/180.)*np.cos(raDeg*np.pi/180.)
yt = np.cos(decDeg*np.pi/180.)*np.sin(raDeg*np.pi/180.)
zt = np.sin(decDeg*np.pi/180.)
if ecliptic:
xt, yt, zt = equatorial_to_ecliptic(np.array((xt, yt, zt)))
et = (jd_tdb-spice.j2000())*24*60*60
if(len(line.strip())>80):
obsCode_test, geoc_pos = satellite_pos(line[80:])
if obsCode_test != obsCode:
print('obs codes not the same', 'x', obsCode_test, 'x', obsCode, 'x')
print(line)
else:
geoc_pos = geocentricObservatory(et, obsCode)
# Get the barycentric position of Earth
if baryhelio=='bary':
pos, _= spice.spkpos('EARTH', et, 'J2000', 'NONE', 'SSB')
elif baryhelio=='helio':
pos, _= spice.spkpos('EARTH', et, 'J2000', 'NONE', 'SUN')
observatory_pos = pos + geoc_pos
observatory_pos /= au_km
if filt.isspace():
filt = '-'
if mag.isspace():
mag = '----'
if ecliptic:
observatory_obs = equatorial_to_ecliptic(observatory_pos)
xo, yo, zo = observatory_pos
outstring = "%11s %4s %6s %s %13.6lf %13.10lf %13.10lf %13.10lf %15.11lf %15.11lf %15.11lf\n"% \
(objName, obsCode, mag, filt, jd_tdb, xt, yt, zt, xo, yo, zo)
outfile.write(outstring)
def format_astrometry_orbfit(filename, h_filename, readfunc=convertObs80, ecliptic=False):
with open(h_filename, 'w') as outfile:
with open(filename, 'r') as f:
# skip the header line. This should be generalized.
#f.readline()
outstring = "#trackletID jd_tdb ra ra_unc dec dec_unc x_obs y_obs z_obs obsCode \n"
outfile.write(outstring)
for i, line in enumerate(f):
if line.strip().startswith('/'):
continue
if line[14]=='R':
continue
objName, jd_tdb, raDeg, decDeg, mag, filt, RA_sig, Dec_sig, mag_sig, obsCode, prob = readfunc(line[0:80])
xt = np.cos(decDeg*np.pi/180.)*np.cos(raDeg*np.pi/180.)
yt = np.cos(decDeg*np.pi/180.)*np.sin(raDeg*np.pi/180.)
zt = np.sin(decDeg*np.pi/180.)
RA_sig = 0.2
Dec_sig = 0.2
if ecliptic:
xt, yt, zt = equatorial_to_ecliptic(np.array((xt, yt, zt)))
et = (jd_tdb-spice.j2000())*24*60*60
if(len(line.strip())>80):
obsCode_test, geoc_pos = satellite_pos(line[80:])
if obsCode_test != obsCode:
print('obs codes not the same', 'x', obsCode_test, 'x', obsCode, 'x')
print(line)
else:
geoc_pos = geocentricObservatory(et, obsCode)
# Get the barycentric position of Earth
pos, _= spice.spkpos('EARTH', et, 'J2000', 'NONE', 'SSB')
bary_obs = pos + geoc_pos
bary_obs /= au_km
if filt.isspace():
filt = '-'
if mag.isspace():
mag = '----'
if ecliptic:
bary_obs = equatorial_to_ecliptic(bary_obs)
xo, yo, zo = bary_obs
outstring = "%11s %13.10lf %13.7lf %5.2lf %13.7lf %5.2lf %15.11lf %15.11lf %15.11lf %4s\n"% \
(objName, jd_tdb, raDeg, RA_sig, decDeg, Dec_sig, xo, yo, zo, obsCode)
outfile.write(outstring)
def format_astrometry_JWST(filename, h_filename, readfunc=convertJWST, ecliptic=False):
with open(h_filename, 'w') as outfile:
with open(filename, 'r') as f:
f.readline()
f.readline()
f.readline()
# skip the header line. This should be generalized.
#f.readline()
outstring = "#trackletID jd_tdb ra ra_unc dec dec_unc x_obs y_obs z_obs obsCode \n"
outfile.write(outstring)
for i, line in enumerate(f):
if line.strip().startswith('/'):
continue
if line[14]=='R':
continue
objName, jd_tdb, raDeg, decDeg, obsCode, geoc_pos = readfunc(line)
xt = np.cos(decDeg*np.pi/180.)*np.cos(raDeg*np.pi/180.)
yt = np.cos(decDeg*np.pi/180.)*np.sin(raDeg*np.pi/180.)
zt = np.sin(decDeg*np.pi/180.)
RA_sig = 0.002
Dec_sig = 0.002
if ecliptic:
xt, yt, zt = equatorial_to_ecliptic(np.array((xt, yt, zt)))
et = (jd_tdb-spice.j2000())*24*60*60
# Get the barycentric position of Earth
pos, _= spice.spkpos('EARTH', et, 'J2000', 'NONE', 'SSB')
bary_obs = pos + geoc_pos
bary_obs /= au_km
if ecliptic:
bary_obs = equatorial_to_ecliptic(bary_obs)
xo, yo, zo = bary_obs
outstring = "%11s %13.10lf %13.7lf %6.3lf %13.7lf %6.3lf %15.11lf %15.11lf %15.11lf %4s\n"% \
(objName, jd_tdb, raDeg, RA_sig, decDeg, Dec_sig, xo, yo, zo, obsCode)
outfile.write(outstring)
# Look for time gaps > dt in a sorted list of times
def segment_times(times, dt):
result =[]
t0 = times[0]
for i, t in enumerate(times):
if np.abs(t-t0)>dt:
result.append(i)
t0 = t
return result
# This is used to separate a sorted array of values
# into chunks wherever a gap of dt or larger is encountered.
def segment(times, dt):
times = np.array(times)
idxs = list(np.where((times[1:] - times[:-1])>dt)[0]+1)
idxs0 = [0]+idxs
idxs = idxs + [len(times)]
return list(zip(idxs0, idxs))
# Returns the jd of new moon, to the nearest half day
def lunation_center(n, tref=2457722.0125, p=29.53055):
t = tref + p*n
tp = np.floor(t) + 0.5
return tp
def full_moon_center(n, tref=2457722.0125, p=29.53055):
t = tref + p*(n+0.5)
tp = np.floor(t) + 0.5
return tp
# Return the number of sequential comment lines that were skipped at the
# beginning of a file.
def count_skip_lines(comment_char, filename):
with open(filename) as infile:
i = 0
line = infile.readline()
while line.startswith(comment_char):
line = infile.readline()
i += 1
return i
# This routine separates tracklets into time windows (centered on a list of times within a time range)
# and saves the results in pickle files.
def separate_time_windows_v5(tracklets, sortedTracklets, tracklets_jd_dict, time_centers, file_stem='data/itf_new_1_line_ec.mpc', dt=15., suff='.mpc'):
files = {}
header='#trackletID yr mn dy obsCode mag filter jd_tdb x_target y_target z_target x_obs y_obs z_obs '
jds = [tracklets_jd_dict[k] for k in sortedTracklets]
for t in time_centers:
i = bisect.bisect(jds, t-dt, 0, len(jds))
j = bisect.bisect(jds, t+dt, 0, len(jds))
if j>i:
tmp_tracklets={}
tmp_sortedTracklets=sortedTracklets[i:j]
tmp_tracklets_jd_dict={}
outfile = file_stem.replace('.mpc', '')+'_'+str(t)+'_pm'+str(dt)+suff
for key in tmp_sortedTracklets:
tmp_tracklets[key] = tracklets[key]
tmp_tracklets_jd_dict[key] = tracklets_jd_dict[key]
with open(outfile, 'wb') as handle:
pickle.dump((tmp_tracklets, tmp_tracklets_jd_dict, tmp_sortedTracklets), handle, protocol=pickle.HIGHEST_PROTOCOL)
def tracklet_time_windows(tracklets, sortedTracklets, tracklets_jd_dict, time_centers, dt=15.):
jds = [tracklets_jd_dict[k] for k in sortedTracklets]
results =[]
for t in time_centers:
i = bisect.bisect(jds, t-dt, 0, len(jds))
j = bisect.bisect(jds, t+dt, 0, len(jds))
results.append((i, j))
return results
def parse_line(line):
fields = line.split()
trackletID = fields[0].strip()
obsCode = fields[1]
jd_tdb = float(fields[4])
return trackletID, obsCode, jd_tdb
# This routine is fundamental. It takes both the name of the
# file that contains the data in the original MPC format and
# same file in our format, then it goes through and identifies
# tracklets according to a set of criteria.
#
# The criteria for a tracklet are:
# 1) The same obsCode
# 2) The same night (within +/- 0.5 day)
# 3) The same trkSub (observer-assigned trackletID)
#
# Make the time span flexible
#
# It returns a dictionary of tracklets for which the keys
# are a 3-part tuple composed of a trackletID, a day number,
# and an obsCode; a dictionary of the start times of those tracklets,
# using the same keys; and a list of the 3-part keys in the order
# of those start times.
def get_sorted_tracklets(itf_filename_orig, itf_filename, parse_func=parse_line):
# Skip the header lines
skip_count = count_skip_lines('#', itf_filename_orig)
infile_orig = open(itf_filename_orig)
for _ in range(skip_count):
infile_orig.readline()
skip_count = count_skip_lines('#', itf_filename)
infile = open(itf_filename)
for _ in range(skip_count):
infile.readline()
temp_tracklets = defaultdict(list)
for line, line_orig in zip(infile, infile_orig):
# The next lines should be replaced with
# more general methods
try:
trackletID, obsCode, jd_tdb = parse_func(line)
#fields = line.split()
#trackletID = fields[0].strip()
#obsCode = fields[1]
#jd_tdb = float(fields[4])
except:
print(line)
# As an intermediate step, we are gathering
# tracklets that might span multiple nights.
#print(trackletID.strip(), obsCode)
temp_key = (trackletID.strip(), obsCode)
temp_tracklets[temp_key].append((line, line_orig))
# Now iterate over the sets of gathered lines, converting them to sets
# and back to lists to eliminate exact duplicates
for key in temp_tracklets.keys():
temp_tracklets[key]= list(set(temp_tracklets[key]))
#return temp_tracklets
# Now iterate over the sets of gathered lines, sorting the lines, and
# splitting them up into tracklets that meet the criteria.
tracklets = defaultdict(list)
tracklets_jd_dict = {}
for temp_key, v in temp_tracklets.items():
trackletID = temp_key[0]
obsCode = temp_key[1]
# This is not general
sortedLines = sorted(v, key=lambda k: float(k[0].split()[4]))
sortedTimes = sorted([float(k[0].split()[4]) for k in sortedLines])
#dt = sortedTimes[-1] - sortedTimes[0]
idxs = segment(sortedTimes, 0.5)
for s in idxs:
jd_tdb = sortedTimes[s[0]]
mjdp = int(jd_tdb-2400000.5)
key = (trackletID, mjdp, obsCode)
if key not in tracklets_jd_dict:
tracklets_jd_dict[key] = jd_tdb
tracklets[key].extend(sortedLines[s[0]:s[1]])
# We changed this on 20 Mar 2018 to exclude singleton tracklets.
# The line below was active before, including the singleton tracklets.
trackletKeys = [k for k in tracklets.keys() if len(tracklets[k])>1]
sortedTrackletKeys = sorted(trackletKeys, key=lambda k: tracklets_jd_dict[k])
return tracklets, tracklets_jd_dict, sortedTrackletKeys
# Get the time and vectors from a line, where the line is
# in our format.
def get_observation_data(line):
fields = line.split()
trackletID = fields[0].strip()
jd_tdb = float(fields[4])
x_target, y_target, z_target = fields[-6:-3]
r_target = np.array([float(x_target), float(y_target), float(z_target)])
x_obs, y_obs, z_obs = fields[-3:]
r_obs = np.array([float(x_obs), float(y_obs), float(z_obs)])
return jd_tdb, r_target, r_obs
def fg_series(mu, r0, r0dot, t):
sigma = mu/(r0*r0*r0)
tau = r0dot/r0
f = 1.0 - 0.5*sigma*t*t + 0.5*sigma*tau*t*t*t
g = t - sigma*t*t*t/6.0
return f, g
def initialize_observations(tracklet):
jd_tdb, r_target, r_E = [], [], []
for obs in tracklet:
jd, rt, re = get_observation_data(obs[0])
jd_tdb.append(jd)
r_target.append(rt)
r_E.append(re)
jd_tdb = np.array(jd_tdb)
r_target = np.array(r_target)
r_E = np.array(r_E)
return(jd_tdb, r_target, r_E)
def apply_constraints(r0, r0dot, r, v):
r0hat = r/np.linalg.norm(r)
vpara = np.dot(v, r0hat)*r0hat
vperp = v - vpara
v_new = vperp + r0dot*r0hat
r_new = r0*r0hat
return(r_new, v_new)
def initial_solution(t0, r0, r0dot, jd_tdb, r_target, r_E,
rho = None,
c = MPC_library.Constants.speed_of_light,
GMsun = MPC_library.Constants.GMsun,
constraints = True,):
if rho==None:
rho = np.ones(len(jd_tdb))*r0
# The equations could be normalized by r0.
# Not sure if that would be helpful.
# rhs = r_target.T*rho/r0 + r_E.T/r0
rhs = r_target.T*rho + r_E.T
rhs = rhs.T
dts = rho/c
tp = jd_tdb-dts
A = np.array(fg_series(GMsun, r0, r0dot, tp-t0)).T
res = np.linalg.lstsq(A, rhs, rcond=None)[0]
r = res[0]
v = res[1]
if constraints:
r_new, v_new = apply_constraints(r0, r0dot, r, v)
else:
r_new, v_new = r, v
return dts, r_new, v_new
def iterative_solution(t0, r0, r0dot, jd_tdb, r_target, r_E, dts, r_new, v_new,
c = MPC_library.Constants.speed_of_light,
GMsun = MPC_library.Constants.GMsun,
constraints = True,
tol = 1e-9,
itermax = 20):
for i in range(itermax):
r_prev = r_new
v_prev = v_new
rho=[]
fg = []
# Might be able to avoid this step by restructuring universal_fg
s0 = kc.State(r_new[0], r_new[1], r_new[2], v_new[0], v_new[1], v_new[2])
tp = jd_tdb - dts
# There are two different ways to call universal_fg
states, f, g, fdot, gdot, flags = kc.universal_fg_n(len(tp), GMsun, s0, (tp-t0))
# It would be good to get rid of this explicit loop
for st, re, f, g in zip(states, r_E, f, g):
rhop = np.sqrt((st.x-re[0])*(st.x-re[0]) + (st.y-re[1])*(st.y-re[1]) + (st.z-re[2])*(st.z-re[2]))
rho.append(rhop)
fg.append((f, g))
rho = np.array(rho)
A = np.array(fg)
dts = rho/c
rhs = r_target.T*rho + r_E.T
rhs = rhs.T
res = np.linalg.lstsq(A, rhs, rcond=None)[0]
r = res[0]
v = res[1]
if constraints:
r_new, v_new = apply_constraints(r0, r0dot, r, v)
else:
r_new, v_new = r, v
if (np.linalg.norm(r_new-r_prev)/r0 < tol): # and (np.linalg.norm(v_new-v_prev)/r0dot < tol):
break
if i==20:
# This should be an exception
print('iterations')
return dts, r_new, v_new, tp-t0, states
def get_solution(t0, r0, r0dot, tracklet):
jd_tdb, r_target, r_E = initialize_observations(tracklet)
dts, r_new, v_new = initial_solution(t0, r0, r0dot, jd_tdb, r_target, r_E)
dts, r_new, v_new, delta_t, states = iterative_solution(t0, r0, r0dot, jd_tdb, r_target, r_E, dts, r_new, v_new)
return r_new, v_new, dts, delta_t, states
def transform_tracklets(t0, r0, r0dot, tracklets_dict):
solutions = {}
# It woud be good to get rid of this explicit loop.
for k, tracklet in tracklets_dict.items():
if len(tracklet)>1:
try:
r_new, v_new, dts, delta_t, _ = get_solution(t0, r0, r0dot, tracklet)
solutions[k] = r_new, v_new, dts, delta_t, t0
except:
print("Error", k)
return solutions
def transform_tracklets(t0, r0, r0dot, tracklets_dict):
solutions = {}
for k, tracklet in tracklets_dict.items():
if len(tracklet)>1:
r_new, v_new, dts, delta_t, _ = get_solution(t0, r0, r0dot, tracklet)
solutions[k] = r_new, v_new, dts, delta_t, t0
return solutions
def DFS(v, visited, matches):
visited.add(v)
for neighbour in matches[v]:
if neighbour not in visited:
DFS(neighbour, visited, matches)
return visited
def group_clusters(matches, nm=1):
clusters = []
remainders = set([i for i, m in enumerate(matches) if len(m)>=nm])
while len(remainders)>0:
s = remainders.pop()
cluster = DFS(s, set(), matches)
clusters.append(cluster)
remainders = remainders.difference(cluster)
return clusters
def find_clusters(solutions, r0, r0dot, scale, rad, nm=2):
# There is no guarantee that solutions.items() will
# behave the same in the two calls.
solns = np.array([np.append(v[0], scale*v[1]) for (k, v) in solutions.items()])/r0
#solns = np.array([np.append(v[0]/r0, scale*v[1]/r0dot) for (k, v) in solutions.items()])
#solns = np.array([v[0]/r0 for (k, v) in solutions.items()])
keys = [k for (k, v) in solutions.items()]
points=np.array(solns)
tree = scipy.spatial.cKDTree(points)
matches = tree.query_ball_tree(tree, rad)
clusters = group_clusters(matches, nm=nm)
return clusters, keys
def find_matches(solutions, r0, r0dot, scale, rad, nm=2):
# There is no guarantee that solutions.items() will
# behave the same in the two calls.
solns = np.array([np.append(v[0], scale*v[1]) for (k, v) in solutions.items()])/r0
#solns = np.array([np.append(v[0]/r0, scale*v[1]/r0dot) for (k, v) in solutions.items()])
#solns = np.array([v[0]/r0 for (k, v) in solutions.items()])
keys = [k for (k, v) in solutions.items()]
points=np.array(solns)
tree = scipy.spatial.cKDTree(points)
matches = tree.query_ball_tree(tree, rad)
#clusters = group_clusters(matches, nm=nm)
return matches, keys
# This returns the topocentric distances and new heliocentric
# position vectors to the target, given the assumed distance
# r and the position vector of the observatory re.
def adjust_position(r, rho_target, re):
rho_x, rho_y, rho_z = rho_target
xe, ye, ze = re
Robs = np.sqrt(xe * xe + ye * ye + ze * ze)
cos_phi = -(rho_x * xe + rho_y * ye + rho_z * ze) / Robs
phi = np.arccos(cos_phi)
sin_phi = np.sin(phi)
xx2 = r*r - Robs*sin_phi * Robs*sin_phi
if xx2 < 0:
None, None
xx = np.sqrt(xx2)
yy = Robs * cos_phi
rho_p = yy + xx
# This could be done with numpy arrays
x_p = xe + rho_p*rho_x
y_p = ye + rho_p*rho_y
z_p = ze + rho_p*rho_z
rho_m = yy - xx
# This could be done with numpy arrays
x_m = xe + rho_m*rho_x
y_m = ye + rho_m*rho_y
z_m = ze + rho_m*rho_z
return (rho_p, (x_p, y_p, z_p)), (rho_m, (x_m, y_m, z_m))
# This returns the topocentric distances and new heliocentric
# position vectors to the target, given the assumed distance
# r and the position vector of the observatory re.
# This version assumes that only the positive solution is valid.
# This should be converted to numpy arrays.
# This should go in a library.
def adjust_position_p(r, rho_target, re):
rho_x, rho_y, rho_z = rho_target
xe, ye, ze = re
Robs = np.sqrt(xe * xe + ye * ye + ze * ze)
cos_phi = -(rho_x * xe + rho_y * ye + rho_z * ze) / Robs
phi = np.arccos(cos_phi)
sin_phi = np.sin(phi)
xx2 = r*r - Robs*sin_phi * Robs*sin_phi
xx = np.sqrt(xx2)
yy = Robs * cos_phi
rho_p = yy + xx
# This could be done with numpy arrays
x_p = xe + rho_p*rho_x
y_p = ye + rho_p*rho_y
z_p = ze + rho_p*rho_z
return (rho_p, (x_p, y_p, z_p))
# Check again
# This routine returns the 3-D rotation matrix for the
# given reference vector.
def xyz_to_proj_matrix(r_ref):
x_ref, y_ref, z_ref = r_ref
r = np.sqrt(x_ref*x_ref + y_ref*y_ref + z_ref*z_ref)
lon0 = np.arctan2(y_ref, x_ref)
lat0 = np.arcsin(z_ref/r)
slon0 = np.sin(lon0)
clon0 = np.cos(lon0)
slat0 = np.sin(lat0)
clat0 = np.cos(lat0)
mat = np.array([[-slon0, clon0, 0],
[-clon0*slat0, -slon0*slat0, clat0],
[clon0*clat0, slon0*clat0, slat0 ]])
return mat
# Check again
# This routine returns the 3-D rotation matrix for the
# given reference vector.
def proj_to_xyz_matrix(r_ref):
x_ref, y_ref, z_ref = r_ref
r = np.sqrt(x_ref*x_ref + y_ref*y_ref + z_ref*z_ref)
lon0 = np.arctan2(y_ref, x_ref)
lat0 = np.arcsin(z_ref/r)
slon0 = np.sin(lon0)
clon0 = np.cos(lon0)
slat0 = np.sin(lat0)
clat0 = np.cos(lat0)
mat = np.array([[-slon0, -clon0*slat0, clon0*clat0],
[clon0, -slon0*slat0, slon0*clat0],
[0, clat0, slat0 ]])
return mat
def residuals(p, v, t_ref, gdot, GM=MPC_library.Constants.GMsun, speed_of_light=MPC_library.Constants.speed_of_light):
a, adot, b, bdot, g = p
t_emit = np.array([(obs.t-t_ref - obs.ze/speed_of_light) for obs in v])
acc_z = -GM*g*g
fac = np.array([(1.0 - gdot*t - 0.5*g*acc_z*t*t + g*obs.ze) for obs, t in zip(v, t_emit)])
#fac = np.array([(1.0 - gdot*t) for obs, t in zip(v, t_emit)])
theta_x = np.array([obs.theta_x for obs in v])
theta_y = np.array([obs.theta_y for obs in v])
xe = np.array([obs.xe for obs in v])
ye = np.array([obs.ye for obs in v])
mod_x = a + adot*t_emit - g*xe - gdot*t_emit*(adot*t_emit - g*xe)
mod_y = b + bdot*t_emit - g*ye - gdot*t_emit*(bdot*t_emit - g*ye)
#mod_x = (a + adot*t_emit - g*xe)/fac # - gdot*t_emit*(adot*t_emit - g*xe)
#mod_y = (b + bdot*t_emit - g*ye)/fac # - gdot*t_emit*(bdot*t_emit - g*ye)
res_x = theta_x - mod_x
res_y = theta_y - mod_y
res = np.empty((res_x.size + res_y.size,), dtype=res_x.dtype)
res[0::2] = res_x
res[1::2] = res_y
return res
def partials(p, v, t_ref, gdot, GM=MPC_library.Constants.GMsun, speed_of_light=MPC_library.Constants.speed_of_light):
a, adot, b, bdot, g = p
#a, adot, b, bdot, g, gdot = p
t_emit = np.array([(obs.t-t_ref - obs.ze/speed_of_light) for obs in v])
xe = np.array([obs.xe for obs in v])
ye = np.array([obs.ye for obs in v])
mod_x = a + adot*t_emit - g*xe - gdot * (adot*t_emit*t_emit - g*xe*t_emit)
mod_y = b + bdot*t_emit - g*ye - gdot * (bdot*t_emit*t_emit - g*ye*t_emit)
dres_x_da = -np.ones(len(t_emit))
dres_x_dadot = -t_emit + gdot*t_emit*t_emit
dres_x_db = np.zeros(len(t_emit))
dres_x_dbdot = np.zeros(len(t_emit))
dres_x_dg = xe - gdot*xe*t_emit
dres_x_dgdot = adot*t_emit*t_emit - g*xe*t_emit
dres_x = np.column_stack((dres_x_da, dres_x_dadot,
dres_x_db, dres_x_dbdot,
dres_x_dg))#, dres_x_dgdot))
dres_y_da = np.zeros(len(t_emit))
dres_y_dadot = np.zeros(len(t_emit))
dres_y_db = -np.ones(len(t_emit))
dres_y_dbdot = -t_emit + gdot*t_emit*t_emit
dres_y_dg = ye - gdot*ye*t_emit
dres_y_dgdot = bdot*t_emit*t_emit - g*ye*t_emit
dres_y = np.column_stack((dres_y_da, dres_y_dadot,
dres_y_db, dres_y_dbdot,