-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_plot.py
119 lines (97 loc) · 4.15 KB
/
create_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2023 The ibanez_ts9 developers. All rights reserved.
# Project site: https://github.com/matthewrankin/ibanez_ts9
# Use of this source code is governed by a MIT-style license that
# can be found in the LICENSE.txt file for the project.
'''
create_plot.py
Reads the SDF file and plots the data.
'''
# Standard module imports
import sys
# Numerical/analysis related imports
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
# Third-party imports
import sdfascii
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('inputfile', action='store',
help='Input filename excluding extension')
parser.add_argument('outputfile', action='store',
help='Output plot filename')
args = parser.parse_args()
sdf_hdr, sdf_data = sdfascii.read_sdf_file(args.inputfile)
data_hdr = sdf_hdr['data_hdr'][0]
x0 = data_hdr['abscissa_first_x']
abscissa_delta_x = data_hdr['abscissa_delta_x']
num_points = data_hdr['num_points']
# Create the x-data.
if data_hdr['x_resolution_type'] == 'Linear':
x_data = np.fromfunction(
lambda i: x0 + abscissa_delta_x * i, (num_points,))
elif data_hdr['x_resolution_type'] == 'Logarithmic':
x_data = np.fromfunction(
lambda i: x0 * abscissa_delta_x ** i, (num_points,))
else:
sys.exit('Bad x_resolution_type')
# If this is an FFT measurement, then the x-data is only valid (i.e., alias
# protected) from the start_freq_index to the stop_freq_index.
if sdf_hdr['meas_hdr']['meas_type'] == 'FFT measurement':
start_freq_index = sdf_hdr['meas_hdr']['start_freq_index']
stop_freq_index = sdf_hdr['meas_hdr']['stop_freq_index']
x_data = x_data[start_freq_index:stop_freq_index+1]
# Convert from Hz to kHz for the plot.
x_data = x_data / 1000
# Set the font size to small for everything
font = {'size': 10}
matplotlib.rc('font', **font)
# Create the plot
fig = plt.figure()
axes = fig.add_subplot(111)
# Convert the y-data to dB.
if sdf_hdr['meas_hdr']['meas_type'] != 'FFT measurement':
y_data = 20 * np.log10(np.abs(sdf_data))
axes.semilogx(x_data, y_data)
else:
y_data = sdf_data * 1000 # Convert to mVrms
axes.semilogy(x_data, y_data)
# Plot the data.
# Display the minor values
axes.tick_params(axis='both', which='both', labelsize='x-small')
# Display the major and minor ticks as non-exponents.
axes.yaxis.set_major_formatter(plt.FormatStrFormatter('%g'))
axes.xaxis.set_major_formatter(plt.FormatStrFormatter('%g'))
axes.xaxis.set_minor_formatter(plt.FormatStrFormatter('%g'))
# Display the minor values
axes.tick_params(axis='both', which='both', labelsize='x-small')
# Show gridlines
axes.grid(visible=True, which='major', color='gray', linestyle='-')
axes.grid(visible=True, which='minor', color='gray', linestyle='--')
axes.set_axisbelow(True)
axes.set_xlabel('Frequency (kHz)')
# Set the y axis to go between -30dB and 20dB.
if sdf_hdr['meas_hdr']['meas_type'] != 'FFT measurement':
axes.yaxis.set_minor_formatter(plt.FormatStrFormatter('%g'))
axes.set_ylim(ymin=-30, ymax=20)
axes.set_xlim(xmin=0.02, xmax=20)
axes.set_ylabel('Amplitude (dB)')
# Override default x-axis ticks.
plot_ticks = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 20]
plot_labels = ['', '', '0.03', '', '', '', '0.07', '', '', '0.1', '',
'0.3', '', '0.5', '', '0.7', '', '', '1', '2', '3', '4',
'5', '6', '', '8', '', '10', '20']
plt.xticks(plot_ticks, plot_labels, minor=True)
else:
axes.set_ylabel('Amplitude (mVrms)')
axes.set_xlim(xmin=0.00, xmax=12.8)
axes.set_ylim(ymin=0.00001, ymax=100)
# Save the plot to a PDF
plt.savefig(args.outputfile)
# Clear all the Matplotlib plots
plt.close('all')