-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer_berryIMU.py
252 lines (198 loc) · 8.67 KB
/
transfer_berryIMU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import math
import datetime
import serial
import time
# Serial Communication instantiation
port = '/dev/ttyUSB0'
baud = 115200
ser = serial.Serial(port, baud)
ser.flushInput()
start_time = int(round(time.time() * 1000))
#print(milli_sec)
#start_time = time.microsecond
# global constants for quaternion update
GyroMeasError = math.pi*(float(40.0) / float(180.0))
GyroMeasDrift = math.pi*(float(0.0) / float(180.0))
beta = math.sqrt(float(3.0) / float(4.0)) * GyroMeasError
zeta = math.sqrt(float(3.0) / float(4.0)) * GyroMeasDrift
deltat = float(0.0)
lastUpdate = 0
Now = 0
q = [float(1.0),float(0.0),float(0.0),float(0.0)]
#IMU.detectIMU() #Detect if BerryIMUv1 or BerryIMUv2 is connected.
#IMU.initIMU() #Initialise the accelerometer, gyroscope and compass
# resolutions for accel, gyro, and mag data
aRes = 0.00021
gxRes = 0.023
gyRes = 0.038
gzRes = 0.00787
mRes = 0.0003
def MadgwickQuaternionUpdate(ax,ay,az,gx,gy,gz,mx,my,mz):
q1 = q[0]
q2 = q[1]
q3 = q[2]
q4 = q[3]
norm = float(0.0)
hx = float(0.0)
hy = float(0.0)
_2bx = float(0.0)
_2bz = float(0.0)
s1 = float(0.0)
s2 = float(0.0)
s3 = float(0.0)
s4 = float(0.0)
qDot1 = float(0.0)
qDot2 = float(0.0)
qDot3 = float(0.0)
qDot4 = float(0.0)
# Auxiliary variables to avoid repeated arithmetic
_2q1mx = float(0.0)
_2q1mx = float(0.0)
_2q1mz = float(0.0)
_2q2mx = float(0.0)
_4bx = float(0.0)
_4bz = float(0.0)
_2q1 = float(float(2.0) * q1)
_2q2 = float(float(2.0) * q2)
_2q3 = float(float(2.0) * q3)
_2q4 = float(float(2.0) * q4)
_2q1q3 = float(float(2.0) * q1 * q3)
_2q3q4 = float(float(2.0) * q3 * q4)
q1q1 = float(q1 * q1)
q1q2 = float(q1 * q2)
q1q3 = float(q1 * q3)
q1q4 = float(q1 * q4)
q2q2 = float(q2 * q2)
q2q3 = float(q2 * q3)
q2q4 = float(q2 * q4)
q3q3 = float(q3 * q3)
q3q4 = float(q3 * q4)
q4q4 = float(q4 * q4)
# Normalise accelerometer measurement
norm = math.sqrt(ax * ax + ay * ay + az * az)
if (norm == float(0.0)):
return #handle NaN
norm = float(1.0)/norm
ax *= norm
ay *= norm
az *= norm
# Normalise magnetometer measurement
norm = math.sqrt(mx * mx + my * my + mz * mz)
if (norm == float(0.0)):
return # handle NaN
norm = float(1.0)/norm
mx *= norm
my *= norm
mz *= norm
# Reference direction of Earth's magnetic field
_2q1mx = float(2.0) * q1 * mx
_2q1my = float(2.0) * q1 * my
_2q1mz = float(2.0) * q1 * mz
_2q2mx = float(2.0) * q2 * mx
hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4
hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4
_2bx = math.sqrt(hx * hx + hy * hy)
_2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4
_4bx = float(2.0) * _2bx
_4bz = float(2.0) * _2bz
# Gradient decent algorithm corrective step
s1 = -_2q3 * (float(2.0) * q2q4 - _2q1q3 - ax) + _2q2 * (float(2.0) * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (float(0.5) - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (float(0.5) - q2q2 - q3q3) - mz)
s2 = _2q4 * (float(2.0) * q2q4 - _2q1q3 - ax) + _2q1 * (float(2.0) * q1q2 + _2q3q4 - ay) - float(4.0) * q2 * (float(1.0) - float(2.0) * q2q2 - float(2.0) * q3q3 - az) + _2bz * q4 * (_2bx * (float(0.5) - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (float(0.5) - q2q2 - q3q3) - mz)
s3 = -_2q1 * (float(2.0) * q2q4 - _2q1q3 - ax) + _2q4 * (float(2.0) * q1q2 + _2q3q4 - ay) - float(4.0) * q3 * (float(1.0) - float(2.0) * q2q2 - float(2.0) * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (float(0.5) - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (float(0.5) - q2q2 - q3q3) - mz)
s4 = _2q2 * (float(2.0) * q2q4 - _2q1q3 - ax) + _2q3 * (float(2.0) * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (float(0.5) - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (float(0.5) - q2q2 - q3q3) - mz)
norm = math.sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4) # normalise step magnitude
norm = float(1.0)/norm
s1 *= norm
s2 *= norm
s3 *= norm
s4 *= norm
# Compute rate of change of quaternion
qDot1 = float(0.5) * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1
qDot2 = float(0.5) * (q1 * gx + q3 * gz - q4 * gy) - beta * s2
qDot3 = float(0.5) * (q1 * gy - q2 * gz + q4 * gx) - beta * s3
qDot4 = float(0.5) * (q1 * gz + q2 * gy - q3 * gx) - beta * s4
# Integrate to yield quaternion
q1 += qDot1 * deltat
q2 += qDot2 * deltat
q3 += qDot3 * deltat
q4 += qDot4 * deltat
norm = math.sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); # normalise quaternion
norm = float(1.0)/norm
q[0] = q1 * norm
q[1] = q2 * norm
q[2] = q3 * norm
q[3] = q4 * norm
currmax = 0.0
currmin = 0.0
def make_float(val):
val = val.split(",")
num = float(0.0)
#there is a "-"
if(len(val)==2):
num = float(val[1])
num = -float(1.0)*num
else:
num = float(val[1])
return num
while True:
if(ser.in_waiting >0):
data= ser.readline()
# print(data)
data = data.encode('utf-8').strip()
data_splt = data.split(",")
# print(data)
ax = data_splt[0]
ay = data_splt[1]
az = data_splt[2]
gx = data_splt[3]
gy = data_splt[4]
gz = data_splt[5]
mx = data_splt[6]
my = data_splt[7]
mz = data_splt[8]
ax = float(ax)
ay = float(ay)
az = float(az)
gx = float(gx)
gy = float(gy)
gz = float(gz)
mx = float(mx)
my = float(my)
mz = float(mz)
conf = str(ax)+","+str(ay)+","+str(az)+","+str(gx)+","+str(gy)+","+str(gz)+","+str(mx)+","+str(my)+","+str(mz)
#print(conf)
# b = datetime.datetime.now()
# Now = b.microsecond
#Now = datetime.datetime.now()
Now = millis = int(round(time.time() * 1000))-start_time
# print(Now)
deltat=((Now - lastUpdate)/float(1000.0))
lastUpdate = Now
MadgwickQuaternionUpdate(ax,ay,az,gx*math.pi/float(180.0),gy*math.pi/float(180.0),gz*math.pi/float(180.0),mx,my,mz)
yaw = math.atan2(float(2.0) * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3])
pitch = -math.asin(float(2.0) * (q[1] * q[3] - q[0] * q[2]))
roll = math.atan2(float(2.0) * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3])
pitch *= float(180.0) / math.pi
yaw *= float(180.0) / math.pi;
yaw -= 13.8; # Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
roll *= float(180.0) / math.pi
print(str(roll) + "," + str(pitch))
# print(data_splt)
'''
#time vector
b = datetime.datetime.now()
Now = b.microsecond
deltat=((Now - lastUpdate)/float(1000000.0))
lastUpdate = b.microsecond
MadgwickQuaternionUpdate(ax,ay,az,gx*math.pi/float(180.0),gy*math.pi/float(180.0),gz*math.pi/float(180.0),mx,my,mz)
yaw = math.atan2(float(2.0) * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3])
pitch = -math.asin(float(2.0) * (q[1] * q[3] - q[0] * q[2]))
roll = math.atan2(float(2.0) * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3])
pitch *= float(180.0) / math.pi
yaw *= float(180.0) / math.pi;
yaw -= 13.8; # Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
roll *= float(180.0) / math.pi
print(str(roll) + "," + str(pitch))
#slow program down a bit, makes the output more readable
time.sleep(0.01)
'''