forked from birdnet-team/BirdNET-Lite
-
-
Notifications
You must be signed in to change notification settings - Fork 140
/
Copy pathdaily_plot.py
executable file
·217 lines (165 loc) · 6.74 KB
/
daily_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import sqlite3
import os
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from datetime import datetime
import textwrap
import matplotlib.font_manager as font_manager
from matplotlib import rcParams
userDir = os.path.expanduser('~')
conn = sqlite3.connect(userDir + '/BirdNET-Pi/scripts/birds.db')
df = pd.read_sql_query("SELECT * from detections", conn)
cursor = conn.cursor()
cursor.execute('SELECT * FROM detections WHERE Date = DATE(\'now\', \'localtime\')')
table_rows = cursor.fetchall()
# df=pd.DataFrame(table_rows)
# Convert Date and Time Fields to Panda's format
df['Date'] = pd.to_datetime(df['Date'])
df['Time'] = pd.to_datetime(df['Time'], unit='ns')
# Add round hours to dataframe
df['Hour of Day'] = [r.hour for r in df.Time]
# Create separate dataframes for separate locations
df_plt = df # Default to use the whole Dbase
# Add every font at the specified location
font_dir = [userDir + '/BirdNET-Pi/homepage/static']
for font in font_manager.findSystemFonts(font_dir):
font_manager.fontManager.addfont(font)
# Set font family globally
rcParams['font.family'] = 'Roboto Flex'
# Get todays readings
now = datetime.now()
df_plt_today = df_plt[df_plt['Date'] == now.strftime("%Y-%m-%d")]
# Set number of species to report
readings = 10
plt_top10_today = (df_plt_today['Com_Name'].value_counts()[:readings])
df_plt_top10_today = df_plt_today[df_plt_today.Com_Name.isin(plt_top10_today.index)]
if df_plt_top10_today.empty:
exit(0)
# Set Palette for graphics
pal = "Greens"
# Set up plot axes and titles
f, axs = plt.subplots(1, 2, figsize=(10, 4), gridspec_kw=dict(width_ratios=[3, 6]), facecolor='#77C487')
plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0, hspace=0)
# generate y-axis order for all figures based on frequency
freq_order = pd.value_counts(df_plt_top10_today['Com_Name']).iloc[:readings].index
# make color for max confidence --> this groups by name and calculates max conf
confmax = df_plt_top10_today.groupby('Com_Name')['Confidence'].max()
# reorder confmax to detection frequency order
confmax = confmax.reindex(freq_order)
# norm values for color palette
norm = plt.Normalize(confmax.values.min(), confmax.values.max())
colors = plt.cm.Greens(norm(confmax))
# Generate frequency plot
plot = sns.countplot(y='Com_Name', data=df_plt_top10_today, palette=colors, order=freq_order, ax=axs[0])
# Try plot grid lines between bars - problem at the moment plots grid lines on bars - want between bars
z = plot.get_ymajorticklabels()
plot.set_yticklabels(['\n'.join(textwrap.wrap(ticklabel.get_text(), 15)) for ticklabel in plot.get_yticklabels()], fontsize=10)
plot.set(ylabel=None)
plot.set(xlabel="Detections")
# Generate crosstab matrix for heatmap plot
heat = pd.crosstab(df_plt_top10_today['Com_Name'], df_plt_top10_today['Hour of Day'])
# Order heatmap Birds by frequency of occurrance
heat.index = pd.CategoricalIndex(heat.index, categories=freq_order)
heat.sort_index(level=0, inplace=True)
hours_in_day = pd.Series(data=range(0, 24))
heat_frame = pd.DataFrame(data=0, index=heat.index, columns=hours_in_day)
heat = (heat + heat_frame).fillna(0)
# Get current hour
current_hour = now.hour
# Generate heatmap plot
plot = sns.heatmap(
heat,
norm=LogNorm(),
annot=True,
annot_kws={"fontsize": 7},
fmt="g",
cmap=pal,
square=False,
cbar=False,
linewidths=0.5,
linecolor="Grey",
ax=axs[1],
yticklabels=False
)
# Set color and weight of tick label for current hour
for label in plot.get_xticklabels():
if int(label.get_text()) == current_hour:
label.set_color('yellow')
plot.set_xticklabels(plot.get_xticklabels(), rotation=0, size=7)
# Set heatmap border
for _, spine in plot.spines.items():
spine.set_visible(True)
plot.set(ylabel=None)
plot.set(xlabel="Hour of Day")
# Set combined plot layout and titles
f.subplots_adjust(top=0.9)
plt.suptitle("Top 10 Last Updated: " + str(now.strftime("%Y-%m-%d %H:%M")))
# Save combined plot
userDir = os.path.expanduser('~')
savename = userDir + '/BirdSongs/Extracted/Charts/Combo-' + str(now.strftime("%Y-%m-%d")) + '.png'
plt.savefig(savename)
plt.show()
plt.close()
# Get Bottom detection frequency
plt_Bot10_today = (df_plt_today['Com_Name'].value_counts()[-readings:])
df_plt_Bot10_today = df_plt_today[df_plt_today.Com_Name.isin(plt_Bot10_today.index)]
# Set Palette for graphics
pal = "Reds"
# Set up plot axes and titles
f, axs = plt.subplots(1, 2, figsize=(10, 4), gridspec_kw=dict(width_ratios=[3, 6]), facecolor='#77C487')
plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0, hspace=0)
# generate y-axis order for all figures based on frequency
freq_order = pd.value_counts(df_plt_Bot10_today['Com_Name']).iloc[-readings:].index
# make color for max confidence --> this groups by name and calculates max conf
confmax = df_plt_Bot10_today.groupby('Com_Name')['Confidence'].max()
confmax = confmax.reindex(freq_order)
# probably wrong order . . . how to sort by no. of detections ?
# norm values for color palette
norm = plt.Normalize(confmax.values.min(), confmax.values.max())
colors = plt.cm.Reds(norm(confmax))
# Generate frequency plot
plot = sns.countplot(y='Com_Name', data=df_plt_Bot10_today, palette=colors, order=freq_order, ax=axs[0])
# Try plot grid lines between bars - problem at the moment plots grid lines on bars - want between bars
z = plot.get_ymajorticklabels()
plot.set_yticklabels(['\n'.join(textwrap.wrap(ticklabel.get_text(), 15)) for ticklabel in plot.get_yticklabels()], fontsize=10)
plot.set(ylabel=None)
plot.set(xlabel="Detections")
# Generate crosstab matrix for heatmap plot
heat = pd.crosstab(df_plt_Bot10_today['Com_Name'], df_plt_Bot10_today['Hour of Day'])
# Order heatmap Birds by frequency of occurrance
heat.index = pd.CategoricalIndex(heat.index, categories=freq_order)
heat.sort_index(level=0, inplace=True)
hours_in_day = pd.Series(data=range(0, 24))
heat_frame = pd.DataFrame(data=0, index=heat.index, columns=hours_in_day)
heat = (heat + heat_frame).fillna(0)
# Generatie heatmap plot
plot = sns.heatmap(
heat,
norm=LogNorm(),
annot=True,
fmt="g",
annot_kws={
"fontsize": 7},
cmap=pal,
square=False,
cbar=False,
linewidths=0.5,
linecolor="Grey",
ax=axs[1],
yticklabels=False)
plot.set_xticklabels(plot.get_xticklabels(), rotation=0, size=7)
# Set heatmap border
for _, spine in plot.spines.items():
spine.set_visible(True)
plot.set(ylabel=None)
plot.set(xlabel="Hour of Day")
# Set combined plot layout and titles
f.subplots_adjust(top=0.9)
plt.suptitle("Bottom 10 Last Updated: " + str(now.strftime("%Y-%m-%d %H:%M")))
# Save combined plot
savename = userDir + '/BirdSongs/Extracted/Charts/Combo2-' + str(now.strftime("%Y-%m-%d")) + '.png'
plt.savefig(savename)
plt.show()
plt.close()