-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathca-plotter.py
123 lines (96 loc) · 3.06 KB
/
ca-plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import random
import numpy as np
import matplotlib.pyplot as plt
import array
import itertools
#plt.plot([1,2,3,4])
#plt.ylabel('some numbers')
#plt.show()
# evenly sampled time at 200ms intervals
#t = np.arange(0., 5., 0.2)
# red dashes, blue squares and green triangles
#plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
#plt.show()
#In python: Black = 0; White = 1
#In ECA: Black = 1; white = 0
#neighborhood radius is number of blocks to either side
#For ECA n_rad = 1
n_rad = 1
#number of states for each site
#for ECA, n_k = 2 [0,1]
n_k = 2
#Because python arrays are reversed need index limit for applying rule
hood_limit = n_k**(2*n_rad+1)-1
#Rule is integer between 1 and 256 for elementary CA
#For CA, integer may be larger
#Convert rule to bitarray of size 8 (for ECA)
#rulen = 112112222110112000110112000
rulen = 184
#rulen = 0b11100011111000001110001111100000
#rulen = 3823231968
ruleb = bin(rulen)
rule = ruleb[2:]
#Insert leading zero if necessary
while len(rule) < n_k**(2*n_rad+1): rule = '0'+rule
#Create initial array
CA_size = 301
#random start
#x = np.random.randint(2,size = CA_size)
#random start with x_on% on
#x_on = 0.25
#xx = np.random.random_sample(size = CA_size)
#x = array.array("i",itertools.repeat(0,CA_size))
#for k in range(CA_size):
# if xx[k] > 1.-x_on:
# x[k] = 1
#seeded start
x = array.array("i",itertools.repeat(0,CA_size))
x[CA_size/2] = 1
#Make array "circular" put copy 0th element to end, copy nth element to beginning
#Unnecessary for neighborhood size of 3 --> may need to reinstate for larger neighborhoods
#x_temp = x
#x_temp = np.append(x_temp, x[0])
#x_temp = np.insert(x_temp,0,x[-1])
#Get neighborhood arrangements
nhoods = array.array("i",itertools.repeat(0,CA_size))
steps = 400
for j in range(steps):
for i in range(CA_size):
if i == CA_size-1:
ii = 0
else:
ii = i+1
if j == 0:
nhoods[i] = x[i-1]*4+x[i]*2+x[ii]*1
else:
nhoods[i] = x[j,i-1]*4+x[j,i]*2+x[j,ii]*1
new_x = array.array("i",itertools.repeat(0,CA_size))
#apply rule
for i in range(CA_size):
new_x[i] = int(rule[hood_limit-nhoods[i]])
if j == 0:
x = np.append([x],[new_x], axis = 0)
else:
x = np.append(x,[new_x], axis = 0)
#write output as portable bitmap (PBM)
#first line is "P1 width height" followed by
#height lines of 0's and 1's of length width
# Lets plot
fig, ax = plt.subplots()
image = x
ax.imshow(image, cmap=plt.cm.gist_yarg, interpolation='none', aspect = 1.0)
ax.set_title('ECA Rule #'+str(rulen))
# Move left and bottom spines outward by 10 points
ax.spines['left'].set_position(('outward', 10))
#ax.spines['bottom'].set_position(('outward', 10))
# Hide the right and top spines
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
#ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.xaxis.set_major_locator(plt.NullLocator())
plt.ylabel('Generation')
# Only show ticks on the left and bottom spines
#ax.yaxis.set_ticks_position('left')
#ax.xaxis.set_ticks_position('bottom')
plt.show()