-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathutils.py
364 lines (312 loc) · 12.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
from collections import defaultdict
import subprocess
import numpy as np
import torch
from torch import autograd
from options import opt
def read_bio_samples(f):
lines = []
for line in f:
if not line.rstrip():
if len(lines) > 0:
yield lines
lines = []
else:
lines.append(line.rstrip())
if len(lines) > 0:
yield lines
lines = []
def freeze_net(net):
if not net:
return
for p in net.parameters():
p.requires_grad = False
def unfreeze_net(net):
if not net:
return
for p in net.parameters():
p.requires_grad = True
def sorted_collate(batch):
return my_collate(batch, sort=True)
def unsorted_collate(batch):
return my_collate(batch, sort=False)
def my_collate(batch, sort):
x, y = zip(*batch)
# extract input indices
if opt.default_emb == 'elmo':
x, y = raw_pad(x, y, sort)
else:
x, y = pad(x, y, opt.eos_idx, sort)
return (x, y)
def sorted_cls_collate(batch):
return cls_my_collate(batch, sort=True)
def unsorted_cls_collate(batch):
return cls_my_collate(batch, sort=False)
def cls_my_collate(batch, sort):
x, y = zip(*batch)
# extract input indices
x, y = cls_pad(x, y, opt.eos_idx, sort)
return (x, y)
# TODO do not actually prepare input if char emb is not used to speed up
def pad(x, y, eos_idx, sort):
bs = len(x)
chars = [sample['chars'] for sample in x]
x = [sample['words'] for sample in x]
lengths = [len(row) for row in x] if x else [len(row) for row in chars]
max_len = max(lengths)
# if using CNN, pad to at least the largest kernel size
if opt.model.lower() == 'cnn' or opt.D_model.lower() == 'cnn':
max_len = max(max_len, opt.max_kernel_size)
if chars:
char_lengths = [[len(w) for w in sample] for sample in chars]
max_char_len = max([l for sample in char_lengths for l in sample])
if opt.charemb_model.lower() == 'cnn':
max_char_len = max(max_char_len, max(opt.charemb_kernel_sizes))
# pad sequences
lengths = torch.tensor(lengths)
padded_x = torch.full((len(x), max_len), eos_idx, dtype=torch.long)
padded_y = torch.full((len(y), max_len), -1, dtype=torch.long)
if chars:
padded_chars = torch.full((bs, max_len, max_char_len), eos_idx, dtype=torch.long)
padded_char_lengths = torch.zeros((len(x), max_len), dtype=torch.long)
for i, (row, tag, char_row, cl_row) in enumerate(zip(x, y, chars, char_lengths)):
assert len(row) == len(tag)
assert eos_idx not in row, f'EOS in sequence {row}'
padded_x[i][:len(row)] = torch.tensor(row)
padded_y[i][:len(tag)] = torch.tensor(tag)
if chars:
padded_char_lengths[i][:len(cl_row)] = torch.tensor(cl_row)
for j, ch_word in enumerate(char_row):
padded_chars[i][j][:len(ch_word)] = torch.tensor(ch_word)
# create mask
idxes = torch.arange(0, max_len, dtype=torch.long).unsqueeze(0) # some day, you'll be able to directly do this on cuda
mask = (idxes<lengths.unsqueeze(1)).float()
if sort:
# sort by length
lengths, sort_idx = lengths.sort(0, descending=True)
padded_x = padded_x.index_select(0, sort_idx)
padded_y = padded_y.index_select(0, sort_idx)
if chars:
padded_chars = padded_chars.index_select(0, sort_idx)
padded_char_lengths = padded_char_lengths.index_select(0, sort_idx)
mask = mask.index_select(0, sort_idx)
padded_x = padded_x.to(opt.device)
padded_y = padded_y.to(opt.device)
mask = mask.to(opt.device)
if chars:
padded_chars = padded_chars.to(opt.device)
padded_char_lengths = padded_char_lengths.to(opt.device)
else:
padded_chars = padded_char_lengths = None
return (padded_x, lengths, mask, padded_chars, padded_char_lengths), padded_y
def raw_pad(x, y, sort):
bs = len(x)
lengths = [len(row) for row in x]
max_len = max(lengths)
# if using CNN, pad to at least the largest kernel size
if opt.model.lower() == 'cnn' or opt.D_model.lower() == 'cnn':
max_len = max(max_len, opt.max_kernel_size)
# pad sequences
lengths = torch.tensor(lengths)
padded_y = torch.full((len(y), max_len), -1, dtype=torch.long)
for i, tag in enumerate(y):
padded_y[i][:len(tag)] = torch.tensor(tag)
# create mask
idxes = torch.arange(0, max_len, dtype=torch.long).unsqueeze(0) # some day, you'll be able to directly do this on cuda
mask = (idxes<lengths.unsqueeze(1)).float()
if sort:
# sort by length
lengths, sort_idx = lengths.sort(0, descending=True)
x = [x[i] for i in sort_idx]
padded_y = padded_y.index_select(0, sort_idx)
mask = mask.index_select(0, sort_idx)
padded_y = padded_y.to(opt.device)
mask = mask.to(opt.device)
return (x, lengths, mask), padded_y
def cls_pad(x, y, eos_idx, sort):
bs = len(x)
chars = [sample['chars'] for sample in x] if opt.use_charemb else None
x = [sample['words'] for sample in x]
lengths = [len(row) for row in x]
max_len = max(lengths)
# if using CNN, pad to at least the largest kernel size
if opt.model.lower() == 'cnn':
max_len = max(max_len, opt.max_kernel_size)
if chars:
char_lengths = [[len(w) for w in sample] for sample in chars]
max_char_len = max([l for sample in char_lengths for l in sample])
if opt.charemb_model.lower() == 'cnn':
max_char_len = max(max_char_len, max(opt.charemb_kernel_sizes))
# pad sequences
lengths = torch.tensor(lengths)
y = torch.LongTensor(y).view(-1)
padded_x = torch.full((len(x), max_len), eos_idx, dtype=torch.long)
if chars:
padded_chars = torch.full((bs, max_len, max_char_len), eos_idx, dtype=torch.long)
padded_char_lengths = torch.zeros((len(x), max_len), dtype=torch.long)
for i, (row, char_row, cl_row) in enumerate(zip(x, chars, char_lengths)):
assert eos_idx not in row, f'EOS in sequence {row}'
padded_x[i][:len(row)] = torch.tensor(row)
padded_char_lengths[i][:len(cl_row)] = torch.tensor(cl_row)
for j, ch_word in enumerate(char_row):
padded_chars[i][j][:len(ch_word)] = torch.tensor(ch_word)
else:
for i, row in enumerate(x):
assert eos_idx not in row, f'EOS in sequence {row}'
padded_x[i][:len(row)] = torch.tensor(row)
# create mask
idxes = torch.arange(0, max_len, dtype=torch.long).unsqueeze(0) # some day, you'll be able to directly do this on cuda
mask = (idxes<lengths.unsqueeze(1)).float()
if sort:
# sort by length
lengths, sort_idx = lengths.sort(0, descending=True)
padded_x = padded_x.index_select(0, sort_idx)
y = y.index_select(0, sort_idx)
if chars:
padded_chars = padded_chars.index_select(0, sort_idx)
padded_char_lengths = padded_char_lengths.index_select(0, sort_idx)
mask = mask.index_select(0, sort_idx)
padded_x = padded_x.to(opt.device)
y = y.to(opt.device)
mask = mask.to(opt.device)
if chars:
padded_chars = padded_chars.to(opt.device)
padded_char_lengths = padded_char_lengths.to(opt.device)
return (padded_x, lengths, mask, padded_chars, padded_char_lengths), y
else:
padded_chars = padded_char_lengths = None
return (padded_x, lengths, mask, None, None), y
def calc_gradient_penalty(D, features, onesided=False, interpolate=True):
feature_vecs = list(features.values())
if interpolate:
alpha = torch.rand(feature_vecs[0].size())
alpha /= torch.sum(alpha, dim=1, keepdim=True)
alpha = alpha.cuda() if opt.use_cuda else alpha
interpolates = sum([f*alpha[i] for (i,f) in enumerate(feature_vecs)])
else:
feature = torch.cat(feature_vecs, dim=0)
alpha = torch.rand(len(feature), 1).expand(feature.size())
noise = torch.rand(feature.size())
alpha = alpha.cuda() if opt.use_cuda else alpha
noise = noise.cuda() if opt.use_cuda else noise
interpolates = alpha*feature + (1-alpha)*(feature+0.5*feature.std()*noise)
interpolates = interpolates.to(opt.device, require_grad=True)
disc_interpolates = D(interpolates)
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).cuda() \
if opt.use_cuda else torch.ones(disc_interpolates.size()),
create_graph=True, retain_graph=True, only_inputs=True)[0]
if onesided:
clip_fn = lambda x: x.clamp(min=0)
else:
clip_fn = lambda x: x
gradient_penalty = (clip_fn(gradients.norm(2, dim=1) - 1) ** 2).mean() * opt.gp_lambd
return gradient_penalty
def calc_orthogality_loss(shared_features, lang_features):
assert len(shared_features) == len(lang_features)
loss = None
for i, sf in enumerate(shared_features):
df = lang_features[i]
prod = torch.mm(sf.t(), df)
loss = torch.sum(prod*prod) + (loss if loss is not None else 0)
return loss
def average_cv_accuracy(cv):
"""
cv[fold]['valid'] contains CV accuracy for validation set
cv[fold]['test'] contains CV accuracy for test set
"""
avg_acc = {'valid': defaultdict(float), 'test': defaultdict(float)}
for fold, foldacc in cv.items():
for dataset, cv_acc in foldacc.items():
for lang, acc in cv_acc.items():
avg_acc[dataset][lang] += acc
for lang in avg_acc['valid']:
avg_acc['valid'][lang] /= opt.kfold
avg_acc['test'][lang] /= opt.kfold
# overall average
return avg_acc
def endless_get_next_batch(loaders, iters, lang):
try:
inputs, targets = next(iters[lang])
except StopIteration:
iters[lang] = iter(loaders[lang])
inputs, targets = next(iters[lang])
# In PyTorch 0.3, Batch Norm no longer works for size 1 batch,
# so we will skip leftover batch of size == 1
# if opt.skip_leftover_batch and len(targets) < opt.batch_size:
# return endless_get_next_batch(loaders, iters, lang)
return (inputs, targets)
lang_labels = {}
def get_lang_label(loss, lang, size):
if (lang, size) in lang_labels:
return lang_labels[(lang, size)]
idx = opt.all_langs.index(lang)
if loss.lower() == 'l2':
labels = torch.FloatTensor(size, len(opt.all_langs))
labels.fill_(-1)
labels[:, idx].fill_(1)
else:
labels = torch.LongTensor(size)
labels.fill_(idx)
labels = labels.to(opt.device)
lang_labels[(lang, size)] = labels
return labels
random_lang_labels = {}
def get_random_lang_label(loss, size):
if size in random_lang_labels:
return random_lang_labels[size]
labels = torch.FloatTensor(size, len(opt.all_langs))
if loss.lower() == 'l2':
labels.fill_(0)
else:
labels.fill_(1 / len(opt.all_langs))
labels = labels.to(opt.device)
random_lang_labels[size] = labels
return labels
def get_gate_label(gate_out, lang, mask, expert_sp, all_langs=False):
langs = opt.all_langs if all_langs else opt.langs
num_experts, idx = len(langs), langs.index(lang)
if expert_sp: # 0 is the shared gate
idx += 1
num_experts += 1
labels = torch.zeros_like(gate_out, dtype=torch.float)
labels[:, :, idx].fill_(1.)
if expert_sp:
labels[:, :, 0].fill_(1.)
labels = labels * mask.unsqueeze(-1)
else:
labels = torch.full(gate_out.size()[:-1], idx, dtype=torch.long).to(opt.device)
labels = labels * mask.long().expand_as(labels) - (1 - mask.long().expand_as(labels))
labels = labels.to(opt.device)
return labels
def get_cls_gate_label(gate_out, lang, expert_sp):
num_experts, idx = len(opt.langs), opt.langs.index(lang)
if expert_sp: # 0 is the shared gate
idx += 1
num_experts += 1
labels = torch.zeros_like(gate_out, dtype=torch.float)
labels[:, idx].fill_(1.)
if expert_sp:
labels[:, 0].fill_(1.)
else:
labels = torch.full(gate_out.size()[:-1], idx, dtype=torch.long)
labels = labels.to(opt.device)
return labels
def conllF1(stream, log):
stream.seek(0)
out = subprocess.check_output('./conlleval.pl', input=stream.getvalue(), encoding='utf-8')
out = out.splitlines()
if log:
log.info(out[1])
f1 = float(out[1].split()[-1])
return f1
def gmean(iterable):
a = np.array(iterable)
return a.prod() ** (1. / len(a))
def get_padding_size(kernel_size):
ka = kernel_size // 2
kb = ka - 1 if kernel_size % 2 == 0 else ka
# only pad top and down
return (0, 0, ka, kb)