Skip to content

Latest commit

 

History

History
100 lines (70 loc) · 2.7 KB

File metadata and controls

100 lines (70 loc) · 2.7 KB

Function calling in Phi-4-mini

Function calling first appeared in the Phi Family family, and now you can use it through Phi-4-mini.

This example simulates some Premier League results. I hope Phi-4-mini can provide relevant game information in real time. The sample code is as follows

import torch
import json
import random
import string
import re
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig,pipeline,AutoTokenizer

model_path = "Your Phi-4-mini location"

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="cuda",
    attn_implementation="flash_attention_2",
    torch_dtype="auto",
    trust_remote_code=True)

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

# Tools should be a list of functions stored in json format
tools = [
    {
        "name": "get_match_result",
        "description": "get match result",
        "parameters": {
            "match": {
                "description": "The name of the match",
                "type": "str",
                "default": "Arsenal vs ManCity"
            }
        }
    },
]

# Function implementations

def get_match_result(match: str) -> str:
    # This would be replaced by a weather API
    match_data = {
        "Arsenal vs ManCity": "1:1",
        "Chelsea vs ManUnited": "0:2"
    }
    return match_data.get(match, "I don't know")


messages = [
    {
        "role": "system",
        "content": "You are a helpful assistant",
        "tools": json.dumps(tools), # pass the tools into system message using tools argument
    },
    {
        "role": "user",
        "content": "What is the result of Arsenal vs ManCity today?"
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_dict=True, return_tensors="pt")

inputs = {k: v.to(model.device) for k, v in inputs.items()}
output = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(output[0][len(inputs["input_ids"][0]):]))

tokenizer.batch_decode(output)

response = tokenizer.decode(output[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)

tool_call_id = ''.join(random.choices(string.ascii_letters + string.digits, k=9))

messages.append({"role": "assistant", "tool_calls": [{"type": "function", "id": tool_call_id, "function": response}]})

try :
    tool_call = json.loads(response)[0]

except :
    json_part = re.search(r'\[.*\]', response, re.DOTALL).group(0)

    tool_call = json.loads(json_part)[0]


function_name = tool_call["name"]   

arguments = tool_call["arguments"]

result = get_match_result(**arguments) 

messages.append({"role": "tool", "tool_call_id": tool_call_id, "name": "get_match_result", "content": str(result)})

print(messages)