-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathcertify.py
101 lines (85 loc) · 4.4 KB
/
certify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# evaluate a smoothed classifier on a dataset
from architectures import get_architecture, IMAGENET_CLASSIFIERS
from core import Smooth
from datasets import get_dataset, DATASETS, get_num_classes
from time import time
import argparse
import datetime
import os
import torch
parser = argparse.ArgumentParser(description='Certify many examples')
parser.add_argument("--dataset", choices=DATASETS, help="which dataset")
parser.add_argument("--base_classifier", type=str, help="path to saved pytorch model of base classifier")
parser.add_argument("--sigma", type=float, help="noise hyperparameter")
parser.add_argument("--outfile", type=str, help="output file")
parser.add_argument("--batch", type=int, default=1000, help="batch size")
parser.add_argument("--skip", type=int, default=1, help="how many examples to skip")
parser.add_argument("--max", type=int, default=-1, help="stop after this many examples")
parser.add_argument("--split", choices=["train", "test"], default="test", help="train or test set")
parser.add_argument("--N0", type=int, default=100)
parser.add_argument("--N", type=int, default=10000, help="number of samples to use")
parser.add_argument("--alpha", type=float, default=0.001, help="failure probability")
parser.add_argument('--denoiser', type=str, default='',
help='Path to a denoiser to attached before classifier during certificaiton.')
parser.add_argument('--azure_datastore_path', type=str, default='',
help='Path to imagenet on azure')
parser.add_argument('--philly_imagenet_path', type=str, default='',
help='Path to imagenet on philly')
args = parser.parse_args()
if args.azure_datastore_path:
os.environ['IMAGENET_DIR_AZURE'] = os.path.join(args.azure_datastore_path, 'datasets/imagenet_zipped')
elif args.philly_imagenet_path:
os.environ['IMAGENET_DIR_PHILLY'] = os.path.join(args.philly_imagenet_path, './')
else:
os.environ['IMAGENET_DIR_PHILLY'] = "/hdfs/public/imagenet/2012/"
if __name__ == "__main__":
# load the base classifier
if args.base_classifier in IMAGENET_CLASSIFIERS:
assert args.dataset == 'imagenet'
# loading pretrained imagenet architectures
base_classifier = get_architecture(args.base_classifier ,args.dataset, pytorch_pretrained=True)
else:
checkpoint = torch.load(args.base_classifier)
base_classifier = get_architecture(checkpoint['arch'], args.dataset)
base_classifier.load_state_dict(checkpoint['state_dict'])
if args.denoiser != '':
checkpoint = torch.load(args.denoiser)
if "off-the-shelf-denoiser" in args.denoiser:
denoiser = get_architecture('orig_dncnn', args.dataset)
denoiser.load_state_dict(checkpoint)
else:
denoiser = get_architecture(checkpoint['arch'] ,args.dataset)
denoiser.load_state_dict(checkpoint['state_dict'])
base_classifier = torch.nn.Sequential(denoiser, base_classifier)
base_classifier = base_classifier.eval().cuda()
# create the smooothed classifier g
smoothed_classifier = Smooth(base_classifier, get_num_classes(args.dataset), args.sigma)
# prepare output file
if not os.path.exists(args.outfile.split('sigma')[0]):
os.makedirs(args.outfile.split('sigma')[0])
f = open(args.outfile, 'w')
print("idx\tlabel\tpredict\tradius\tcorrect\ttime", file=f, flush=True)
print("idx\tlabel\tpredict\tradius\tcorrect\ttime", flush=True)
f.close()
# iterate through the dataset
dataset = get_dataset(args.dataset, args.split)
for i in range(len(dataset)):
# only certify every args.skip examples, and stop after args.max examples
if i % args.skip != 0:
continue
if i == args.max:
break
(x, label) = dataset[i]
before_time = time()
# certify the prediction of g around x
x = x.cuda()
prediction, radius = smoothed_classifier.certify(x, args.N0, args.N, args.alpha, args.batch)
after_time = time()
correct = int(prediction == label)
time_elapsed = str(datetime.timedelta(seconds=(after_time - before_time)))
f = open(args.outfile, 'a')
print("{}\t{}\t{}\t{:.3}\t{}\t{}".format(
i, label, prediction, radius, correct, time_elapsed), file=f, flush=True)
print("{}\t{}\t{}\t{:.3}\t{}\t{}".format(
i, label, prediction, radius, correct, time_elapsed), flush=True)
f.close()