-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain_classifier.py
245 lines (201 loc) · 9.79 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# this file is based on code publicly available at
# https://github.com/bearpaw/pytorch-classification
# written by Wei Yang.
from architectures import CLASSIFIERS_ARCHITECTURES, get_architecture
from datasets import get_dataset, DATASETS
from torch.nn import CrossEntropyLoss
from torch.optim import SGD, Optimizer
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader
from train_utils import AverageMeter, accuracy, init_logfile, log, copy_code
import argparse
import datetime
import numpy as np
import os
import time
import torch
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--dataset', type=str, choices=DATASETS)
parser.add_argument('--arch', type=str, choices=CLASSIFIERS_ARCHITECTURES)
parser.add_argument('--outdir', type=str, help='folder to save model and training log)')
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch', default=256, type=int, metavar='N',
help='batchsize (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
help='initial learning rate', dest='lr')
parser.add_argument('--lr_step_size', type=int, default=30,
help='How often to decrease learning by gamma.')
parser.add_argument('--gamma', type=float, default=0.1,
help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 5e-4)')
parser.add_argument('--gpu', default=None, type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--noise_sd', default=0.0, type=float,
help="standard deviation of noise distribution for data augmentation")
parser.add_argument('--resume', action='store_true',
help='if true, tries to resume training from an existing checkpoint')
parser.add_argument('--azure_datastore_path', type=str, default='',
help='Path to imagenet on azure')
parser.add_argument('--philly_imagenet_path', type=str, default='',
help='Path to imagenet on philly')
args = parser.parse_args()
if args.azure_datastore_path:
os.environ['IMAGENET_DIR_AZURE'] = os.path.join(args.azure_datastore_path, 'datasets/imagenet_zipped')
if args.philly_imagenet_path:
os.environ['IMAGENET_DIR_PHILLY'] = os.path.join(args.philly_imagenet_path, './')
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
def main():
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
# Copy code to output directory
copy_code(args.outdir)
train_dataset = get_dataset(args.dataset, 'train')
test_dataset = get_dataset(args.dataset, 'test')
pin_memory = (args.dataset == "imagenet")
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch,
num_workers=args.workers, pin_memory=pin_memory)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=args.batch,
num_workers=args.workers, pin_memory=pin_memory)
model = get_architecture(args.arch, args.dataset)
criterion = CrossEntropyLoss().cuda()
optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
scheduler = StepLR(optimizer, step_size=args.lr_step_size, gamma=args.gamma)
starting_epoch = 0
logfilename = os.path.join(args.outdir, 'log.txt')
## Resume from checkpoint if exists and if resume flag is True
model_path = os.path.join(args.outdir, 'checkpoint.pth.tar')
if args.resume and os.path.isfile(model_path):
print("=> loading checkpoint '{}'".format(model_path))
checkpoint = torch.load(model_path,
map_location=lambda storage, loc: storage)
starting_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(model_path, checkpoint['epoch']))
else:
if args.resume: print("=> no checkpoint found at '{}'".format(args.outdir))
init_logfile(logfilename, "epoch\ttime\tlr\ttrainloss\ttestloss\ttrainAcc\ttestAcc")
for epoch in range(starting_epoch, args.epochs):
before = time.time()
train_loss, train_acc = train(train_loader, model, criterion, optimizer, epoch, args.noise_sd)
test_loss, test_acc = test(test_loader, model, criterion, args.noise_sd)
after = time.time()
log(logfilename, "{}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}".format(
epoch, after - before,
scheduler.get_lr()[0], train_loss, test_loss, train_acc, test_acc))
scheduler.step(epoch)
torch.save({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, os.path.join(args.outdir, 'checkpoint.pth.tar'))
def train(loader: DataLoader, model: torch.nn.Module, criterion, optimizer: Optimizer, epoch: int, noise_sd: float):
"""
Function to do one training epoch
:param loader:DataLoader: dataloader (train)
:param model:torch.nn.Module: the classifer being trained
:param criterion: the loss function
:param optimizer:Optimizer: the optimizer used during trainined
:param epoch:int: the current epoch number (for logging)
:param noise_sd:float: the std-dev of the Guassian noise perturbation of the input
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
# switch to train mode
model.train()
for i, (inputs, targets) in enumerate(loader):
# measure data loading time
data_time.update(time.time() - end)
inputs = inputs.cuda()
targets = targets.cuda()
# augment inputs with noise
inputs = inputs + torch.randn_like(inputs, device='cuda') * noise_sd
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(acc1.item(), inputs.size(0))
top5.update(acc5.item(), inputs.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
return (losses.avg, top1.avg)
def test(loader: DataLoader, model: torch.nn.Module, criterion, noise_sd: float):
"""
Function to evaluate the trained model
:param loader:DataLoader: dataloader (train)
:param model:torch.nn.Module: the classifer being evaluated
:param criterion: the loss function
:param noise_sd:float: the std-dev of the Guassian noise perturbation of the input
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
# switch to eval mode
model.eval()
with torch.no_grad():
for i, (inputs, targets) in enumerate(loader):
# measure data loading time
data_time.update(time.time() - end)
inputs = inputs.cuda()
targets = targets.cuda()
# augment inputs with noise
inputs = inputs + torch.randn_like(inputs, device='cuda') * noise_sd
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(acc1.item(), inputs.size(0))
top5.update(acc5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
return (losses.avg, top1.avg)
if __name__ == "__main__":
main()