-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
tft.py
320 lines (265 loc) · 10.7 KB
/
tft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from pathlib import Path
from typing import Union
import numpy as np
import pandas as pd
import tensorflow.compat.v1 as tf
import data_formatters.base
import expt_settings.configs
import libs.hyperparam_opt
import libs.tft_model
import libs.utils as utils
import os
import datetime as dte
from qlib.model.base import ModelFT
from qlib.data.dataset import DatasetH
from qlib.data.dataset.handler import DataHandlerLP
# To register new datasets, please add them here.
ALLOW_DATASET = ["Alpha158", "Alpha360"]
# To register new datasets, please add their configurations here.
DATASET_SETTING = {
"Alpha158": {
"feature_col": [
"RESI5",
"WVMA5",
"RSQR5",
"KLEN",
"RSQR10",
"CORR5",
"CORD5",
"CORR10",
"ROC60",
"RESI10",
"VSTD5",
"RSQR60",
"CORR60",
"WVMA60",
"STD5",
"RSQR20",
"CORD60",
"CORD10",
"CORR20",
"KLOW",
],
"label_col": "LABEL0",
},
"Alpha360": {
"feature_col": [
"HIGH0",
"LOW0",
"OPEN0",
"CLOSE1",
"HIGH1",
"VOLUME1",
"LOW1",
"VOLUME3",
"OPEN1",
"VOLUME4",
"CLOSE2",
"CLOSE4",
"VOLUME5",
"LOW2",
"CLOSE3",
"VOLUME2",
"HIGH2",
"LOW4",
"VOLUME8",
"VOLUME11",
],
"label_col": "LABEL0",
},
}
def get_shifted_label(data_df, shifts=5, col_shift="LABEL0"):
return data_df[[col_shift]].groupby("instrument").apply(lambda df: df.shift(shifts))
def fill_test_na(test_df):
test_df_res = test_df.copy()
feature_cols = ~test_df_res.columns.str.contains("label", case=False)
test_feature_fna = test_df_res.loc[:, feature_cols].groupby("datetime").apply(lambda df: df.fillna(df.mean()))
test_df_res.loc[:, feature_cols] = test_feature_fna
return test_df_res
def process_qlib_data(df, dataset, fillna=False):
"""Prepare data to fit the TFT model.
Args:
df: Original DataFrame.
fillna: Whether to fill the data with the mean values.
Returns:
Transformed DataFrame.
"""
# Several features selected manually
feature_col = DATASET_SETTING[dataset]["feature_col"]
label_col = [DATASET_SETTING[dataset]["label_col"]]
temp_df = df.loc[:, feature_col + label_col]
if fillna:
temp_df = fill_test_na(temp_df)
temp_df = temp_df.swaplevel()
temp_df = temp_df.sort_index()
temp_df = temp_df.reset_index(level=0)
dates = pd.to_datetime(temp_df.index)
temp_df["date"] = dates
temp_df["day_of_week"] = dates.dayofweek
temp_df["month"] = dates.month
temp_df["year"] = dates.year
temp_df["const"] = 1.0
return temp_df
def process_predicted(df, col_name):
"""Transform the TFT predicted data into Qlib format.
Args:
df: Original DataFrame.
fillna: New column name.
Returns:
Transformed DataFrame.
"""
df_res = df.copy()
df_res = df_res.rename(columns={"forecast_time": "datetime", "identifier": "instrument", "t+4": col_name})
df_res = df_res.set_index(["datetime", "instrument"]).sort_index()
df_res = df_res[[col_name]]
return df_res
def format_score(forecast_df, col_name="pred", label_shift=5):
pred = process_predicted(forecast_df, col_name=col_name)
pred = get_shifted_label(pred, shifts=-label_shift, col_shift=col_name)
pred = pred.dropna()[col_name]
return pred
def transform_df(df, col_name="LABEL0"):
df_res = df["feature"]
df_res[col_name] = df["label"]
return df_res
class TFTModel(ModelFT):
"""TFT Model"""
def __init__(self, **kwargs):
self.model = None
self.params = {"DATASET": "Alpha158", "label_shift": 5}
self.params.update(kwargs)
def _prepare_data(self, dataset: DatasetH):
df_train, df_valid = dataset.prepare(
["train", "valid"], col_set=["feature", "label"], data_key=DataHandlerLP.DK_L
)
return transform_df(df_train), transform_df(df_valid)
def fit(self, dataset: DatasetH, MODEL_FOLDER="qlib_tft_model", USE_GPU_ID=0, **kwargs):
DATASET = self.params["DATASET"]
LABEL_SHIFT = self.params["label_shift"]
LABEL_COL = DATASET_SETTING[DATASET]["label_col"]
if DATASET not in ALLOW_DATASET:
raise AssertionError("The dataset is not supported, please make a new formatter to fit this dataset")
dtrain, dvalid = self._prepare_data(dataset)
dtrain.loc[:, LABEL_COL] = get_shifted_label(dtrain, shifts=LABEL_SHIFT, col_shift=LABEL_COL)
dvalid.loc[:, LABEL_COL] = get_shifted_label(dvalid, shifts=LABEL_SHIFT, col_shift=LABEL_COL)
train = process_qlib_data(dtrain, DATASET, fillna=True).dropna()
valid = process_qlib_data(dvalid, DATASET, fillna=True).dropna()
ExperimentConfig = expt_settings.configs.ExperimentConfig
config = ExperimentConfig(DATASET)
self.data_formatter = config.make_data_formatter()
self.model_folder = MODEL_FOLDER
self.gpu_id = USE_GPU_ID
self.label_shift = LABEL_SHIFT
self.expt_name = DATASET
self.label_col = LABEL_COL
use_gpu = (True, self.gpu_id)
# ===========================Training Process===========================
ModelClass = libs.tft_model.TemporalFusionTransformer
if not isinstance(self.data_formatter, data_formatters.base.GenericDataFormatter):
raise ValueError(
"Data formatters should inherit from"
+ "AbstractDataFormatter! Type={}".format(type(self.data_formatter))
)
default_keras_session = tf.keras.backend.get_session()
if use_gpu[0]:
self.tf_config = utils.get_default_tensorflow_config(tf_device="gpu", gpu_id=use_gpu[1])
else:
self.tf_config = utils.get_default_tensorflow_config(tf_device="cpu")
self.data_formatter.set_scalers(train)
# Sets up default params
fixed_params = self.data_formatter.get_experiment_params()
params = self.data_formatter.get_default_model_params()
params = {**params, **fixed_params}
if not os.path.exists(self.model_folder):
os.makedirs(self.model_folder)
params["model_folder"] = self.model_folder
print("*** Begin training ***")
best_loss = np.Inf
tf.reset_default_graph()
self.tf_graph = tf.Graph()
with self.tf_graph.as_default():
self.sess = tf.Session(config=self.tf_config)
tf.keras.backend.set_session(self.sess)
self.model = ModelClass(params, use_cudnn=use_gpu[0])
self.sess.run(tf.global_variables_initializer())
self.model.fit(train_df=train, valid_df=valid)
print("*** Finished training ***")
saved_model_dir = self.model_folder + "/" + "saved_model"
if not os.path.exists(saved_model_dir):
os.makedirs(saved_model_dir)
self.model.save(saved_model_dir)
def extract_numerical_data(data):
"""Strips out forecast time and identifier columns."""
return data[[col for col in data.columns if col not in {"forecast_time", "identifier"}]]
# p50_loss = utils.numpy_normalised_quantile_loss(
# extract_numerical_data(targets), extract_numerical_data(p50_forecast),
# 0.5)
# p90_loss = utils.numpy_normalised_quantile_loss(
# extract_numerical_data(targets), extract_numerical_data(p90_forecast),
# 0.9)
tf.keras.backend.set_session(default_keras_session)
print("Training completed at {}.".format(dte.datetime.now()))
# ===========================Training Process===========================
def predict(self, dataset):
if self.model is None:
raise ValueError("model is not fitted yet!")
d_test = dataset.prepare("test", col_set=["feature", "label"])
d_test = transform_df(d_test)
d_test.loc[:, self.label_col] = get_shifted_label(d_test, shifts=self.label_shift, col_shift=self.label_col)
test = process_qlib_data(d_test, self.expt_name, fillna=True).dropna()
use_gpu = (True, self.gpu_id)
# ===========================Predicting Process===========================
default_keras_session = tf.keras.backend.get_session()
# Sets up default params
fixed_params = self.data_formatter.get_experiment_params()
params = self.data_formatter.get_default_model_params()
params = {**params, **fixed_params}
print("*** Begin predicting ***")
tf.reset_default_graph()
with self.tf_graph.as_default():
tf.keras.backend.set_session(self.sess)
output_map = self.model.predict(test, return_targets=True)
targets = self.data_formatter.format_predictions(output_map["targets"])
p50_forecast = self.data_formatter.format_predictions(output_map["p50"])
p90_forecast = self.data_formatter.format_predictions(output_map["p90"])
tf.keras.backend.set_session(default_keras_session)
predict50 = format_score(p50_forecast, "pred", 1)
predict90 = format_score(p90_forecast, "pred", 1)
predict = (predict50 + predict90) / 2 # self.label_shift
# ===========================Predicting Process===========================
return predict
def finetune(self, dataset: DatasetH):
"""
finetune model
Parameters
----------
dataset : DatasetH
dataset for finetuning
"""
pass
def to_pickle(self, path: Union[Path, str]):
"""
Tensorflow model can't be dumped directly.
So the data should be save separately
**TODO**: Please implement the function to load the files
Parameters
----------
path : Union[Path, str]
the target path to be dumped
"""
# FIXME: implementing saving tensorflow models
# save tensorflow model
# path = Path(path)
# path.mkdir(parents=True)
# self.model.save(path)
# save qlib model wrapper
drop_attrs = ["model", "tf_graph", "sess", "data_formatter"]
orig_attr = {}
for attr in drop_attrs:
orig_attr[attr] = getattr(self, attr)
setattr(self, attr, None)
super(TFTModel, self).to_pickle(path)
for attr in drop_attrs:
setattr(self, attr, orig_attr[attr])