-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgan.py
350 lines (282 loc) · 14 KB
/
gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import math
from PIL import Image
from keras.datasets import mnist
from pathlib import Path
from skimage import transform
from tensorflow.keras.optimizers import Adam
import numpy as np
import keras.layers
from keras.models import Model
import matplotlib.pyplot as plt
import sklearn
import handshape_datasets as hd
import parameters
from keras.models import load_model
import os
from sklearn import model_selection
import handshape_datasets
default_folder = Path.home() / 'handshape-classification' / 'GANResults'
class GAN():
def __init__(self,dataset_id,**kwargs):
if 'version' in kwargs:
ver=kwargs['version']
if 'delete' in kwargs:
supr= kwargs['delete']
try:
self.dataset = hd.load(dataset_id, version=ver, delete=supr)
except:
try:
self.dataset=hd.load(dataset_id, version=ver)
except:
try:
self.dataset=hd.load(dataset_id, delete=supr)
except:
self.dataset = hd.load(dataset_id)
self.input_shape = self.dataset[0][0].shape
self.img_rows = (self.input_shape[0] // 4) * 4
self.img_cols = (self.input_shape[1] // 4) * 4
self.channels = 3
self.name = dataset_id
if(self.name=="psl" or self.name=="indianB"):
self.img_shape=(128,128,self.channels)
self.img_rows = 128
self.img_cols = 128
else:
if(self.name=="indianA"):
self.img_shape=(64,64,self.channels)
self.img_rows = 64
self.img_cols = 64
else:
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.classes = self.dataset[1]['y'].max() + 1
self.noise_value=100
optimizer = Adam(0.0002, 0.5)
# Build and compile the discriminator
self.base_model, self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
# Build and compile the generator
self.generator = self.build_generator()
noise = keras.layers.Input(shape=(self.noise_value,))
label = keras.layers.Input(shape=(1,))
img = self.generator([noise, label])
#self.generator.compile(loss='binary_crossentropy', optimizer=optimizer)
# The generator takes noise as input and generated imgs
#z = keras.layers.Input(shape=(100,))
#img = self.generator(z)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The valid takes generated images as input and determines validity
valid = self.discriminator([img, label])
# The combined model (stacked generator and discriminator) takes
# noise as input => generates images => determines validity
self.combined = Model([noise, label], valid)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
self.path = default_folder
if not os.path.exists(self.path):
os.makedirs(self.path)
def split(self, test_size,x,y):
cant_examples = np.zeros(y.max() + 1)
classes = y.max() + 1
input_shape = x[0].shape
for i in y:
cant_examples[i] += 1
select = np.where(cant_examples >= (x.shape[0] / classes) * test_size)
y_new = np.array((), dtype='uint8')
pos = np.array((), dtype='uint8')
for (k, cla) in enumerate(y):
for j in select[0]:
if (cla == j):
y_new = np.append(y_new, cla)
pos = np.append(pos, k)
x_new = np.zeros((len(y_new), input_shape[0], input_shape[1], self.channels), dtype='uint8')
if (self.name == "indianA"):
X_new_resize = np.zeros((len(y_new), 64, 64, self.input_shape[2]))
if (self.name == "indianB"):
X_new_resize = np.zeros((len(y_new), 128, 128, self.channels))
if (self.name == "psl"):
X_new_resize = np.zeros((len(y_new), 128, 128, self.channels))
for (i, index) in enumerate(pos):
x_new[i] = self.dataset[0][index]
if (self.name == "indianA" or self.name == "indianB" or self.name=="psl"):
if (self.name == "indianA"):
image = transform.resize(x_new[i], (480, 640), preserve_range=True, mode="reflect",
anti_aliasing=True)
image = Image.fromarray(image.astype(np.uint8), )
left = 20
top = 150.0
right = 550
bottom = 425.0
img = image.crop((left, top, right, bottom))
img2 = np.asarray(img)
X_new_resize[i] = transform.resize(img2, (64, 64), preserve_range=True, mode="reflect",
anti_aliasing=True)
else:
X_new_resize[i] = transform.resize(x_new[i], (128, 128), preserve_range=True, mode="reflect",
anti_aliasing=True)
else:
if ((x[index].shape[0] % 4 != 0) or (x[index].shape[1] % 4 != 0)):
x_new[i] = transform.resize(x[index], (self.img_rows, self.img_cols), preserve_range=True,
mode="reflect",
anti_aliasing=True)
else:
x_new[i] = x[index]
if (self.name == "indianA" or self.name == "indianB" or self.name=="psl"):
X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_new_resize, y_new,
test_size=test_size,
stratify=y_new)
else:
X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(x_new, y_new,
test_size=test_size,
stratify=y_new)
if (X_train.shape[3] == 1):
X_train = np.repeat(X_train, 3, -1)
X_test = np.repeat(X_test, 3, -1)
return X_train, X_test, Y_train, Y_test
def build_generator(self):
noise_shape=(self.noise_value,)
model = keras.models.Sequential(name='generator')
h, w, c = self.img_rows, self.img_cols, self.channels
filters = 256 #256
# Imagen inicial de 7x7 (asumo que genero algo de 28x28)
image_dim = filters * (h // 4) * (w // 4)
model.add(keras.layers.Dense(image_dim, input_shape=noise_shape))
model.add(keras.layers.LeakyReLU(alpha=0.2))
model.add(keras.layers.Reshape((h // 4, w // 4, filters)))
model.add(keras.layers.Dense(256))
# Convertir a 14x14
model.add(keras.layers.Conv2DTranspose(filters, (4, 4), strides=(2, 2), padding='same'))
model.add(keras.layers.LeakyReLU(alpha=0.2))
model.add(keras.layers.Dense(512))
# Convertir a 28x28
model.add(keras.layers.Conv2DTranspose(filters, (4, 4), strides=(2, 2), padding='same'))
model.add(keras.layers.LeakyReLU(alpha=0.2))
#model.add(keras.layers.Dense(np.prod(self.img_shape), activation='tanh'))
# Imagen final de 28x28x1
model.add(keras.layers.Conv2D(c, (7, 7), activation='tanh', padding='same'))
"""
model = keras.models.Sequential()
model.add(keras.layers.Dense(256, input_shape=noise_shape))
model.add(keras.layers.LeakyReLU(alpha=0.2))
model.add(keras.layers.BatchNormalization(momentum=0.8))
model.add(keras.layers.Dense(512))
model.add(keras.layers.LeakyReLU(alpha=0.2))
model.add(keras.layers.BatchNormalization(momentum=0.8))
model.add(keras.layers.Dense(1024))
model.add(keras.layers.LeakyReLU(alpha=0.2))
model.add(keras.layers.BatchNormalization(momentum=0.8))
model.add(keras.layers.Dense(np.prod(self.img_shape), activation='tanh'))
model.add(keras.layers.Reshape(self.img_shape))
"""
model.summary()
noise = keras.layers.Input(shape=(self.noise_value,))
label = keras.layers.Input(shape=(1,), dtype='int32')
label_embedding = keras.layers.Flatten()(keras.layers.Embedding(self.classes, self.noise_value)(label))
model_input = keras.layers.multiply([noise, label_embedding])
img = model(model_input)
return Model([noise, label], img)
def build_discriminator(self):
model = keras.models.Sequential(name="discriminator")
model.add(keras.layers.Conv2D(32, (5, 5), strides=(2, 2), padding='same'))
model.add(keras.layers.LeakyReLU())
model.add(keras.layers.Dense(512))
model.add(keras.layers.Dropout(0.3))
model.add(keras.layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same'))
model.add(keras.layers.LeakyReLU())
model.add(keras.layers.Dense(256))
model.add(keras.layers.Dropout(0.3))
model.add(keras.layers.GlobalAveragePooling2D())
"""
model = keras.models.Sequential(name="discriminator")
model.add(keras.layers.Dense(512, input_dim=np.prod(self.img_shape)))
model.add(keras.layers.LeakyReLU(alpha=0.2))
model.add(keras.layers.Dense(512))
model.add(keras.layers.LeakyReLU(alpha=0.2))
model.add(keras.layers.Dropout(0.4))
model.add(keras.layers.Dense(512))
model.add(keras.layers.LeakyReLU(alpha=0.2))
model.add(keras.layers.Dropout(0.4))
model.add(keras.layers.Dense(1, activation='sigmoid'))
"""
img = keras.layers.Input(shape=self.img_shape)
label = keras.layers.Input(shape=(1,), dtype='int32')
label_embedding = keras.layers.Flatten()(keras.layers.Embedding(self.classes, np.prod(self.img_shape))(label))
flat_img = keras.layers.Flatten()(img)
model_input = keras.layers.multiply([flat_img, label_embedding])
model_input = keras.layers.Reshape(self.img_shape)(model_input)
validity = model(model_input)
discriminator=keras.layers.Dense(1, activation='sigmoid')(validity)
discriminator=Model(inputs=[img,label],outputs=discriminator)
return model, discriminator
def train(self, dataset_id,epochs, batch_size=128, save_interval=50):
# Load the dataset
#(X_train, _), (_, _) = mnist.load_data()
x,metadata= hd.load(dataset_id)
X_train, X_test, Y_train, Y_test=self.split(parameters.get_split_value(dataset_id),x,metadata['y'])
# Rescale -1 to 1
X_train = (X_train.astype(np.float32) - 127.5) / 127.5
#X_train = np.expand_dims(X_train, axis=3)
#half_batch = int(batch_size / 2)
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random half batch of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs, labels = X_train[idx], Y_train[idx]
noise = np.random.normal(0, 1, (batch_size, self.noise_value))
# Generate a half batch of new images
gen_imgs = self.generator.predict([noise, labels])
# Train the discriminator
d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid)
d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
sampled_labels = np.random.randint(0, self.classes, batch_size).reshape(-1, 1)
# The generator wants the discriminator to label the generated samples
# as valid (ones)
#valid_y = np.array([1] * batch_size)
# Train the generator
g_loss = self.combined.train_on_batch([noise, sampled_labels], valid)
# Plot the progress
print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
# If at save interval => save generated image samples
if epoch % save_interval == 0:
self.save_imgs(epoch)
save_path = os.path.join(default_folder, self.name)
self.base_model.save(os.path.join(save_path,f"{self.name}_GANdiscriminator{epochs}.h5"))
self.base_model.save_weights(os.path.join(save_path,f"{self.name}_GANdiscriminator{epochs}_weights.h5"))
print("Saved model to disk")
def save_imgs(self, epoch):
sqr_classes = math.sqrt(self.classes)
if (sqr_classes % 1 > 0):
sqr_classes = int(sqr_classes) + 1
else:
sqr_classes = int(sqr_classes)
r, c = int(sqr_classes), int(sqr_classes)
noise = np.random.normal(0, 1, (r*c, self.noise_value))
sampled_labels = np.arange(0, r*c).reshape(-1, 1)
gen_imgs = self.generator.predict([noise, sampled_labels])
# Rescale images 0 - 1
gen_imgs = 0.5 * gen_imgs + 0.5
fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
for j in range(c):
axs[i,j].imshow(gen_imgs[cnt,:])
axs[i,j].axis('off')
cnt += 1
if(cnt>self.classes):
axs[i, j].set_visible(False)
if (cnt > self.classes):
axs[i, j].set_visible(False)
save_path=os.path.join(self.path,self.name)
if not os.path.exists(save_path):
os.makedirs(save_path)
fig.savefig(os.path.join(save_path, f"GANimage_{epoch}.png"))
plt.close()