-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_single.py
65 lines (55 loc) · 2.49 KB
/
test_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import experiment
from Experiments import mobile_net as mn
from Experiments import dense_net as dn
from Experiments import efficient_net as en
from Experiments import ganDiscriminator as gd
import handshape_datasets as hd
import parameters
import numpy as np
from prettytable import PrettyTable
from pathlib import Path
import math
epochs=15
dataset_id="indianA"
iteracion=1
showgraphics=True
transferl=True
default_folder = Path.home() / 'handshape-classification' / 'Results'
acc_avg_eff=np.zeros(iteracion)
acc_avg_mo=np.zeros(iteracion)
acc_avg_de=np.zeros(iteracion)
acc_avg_gd=np.zeros(iteracion)
for i in range(iteracion):
##MobileNet
mobile = mn.MobileNet(epochs, parameters.get_batch_mobile(dataset_id), dataset_id,tl=transferl)
model = mobile.build_model()
X_train, X_test, Y_train, Y_test = mobile.split(parameters.get_split_value(dataset_id))
history = mobile.load(model, X_train, Y_train, X_test, Y_test)
mobile.graphics(model, X_test, Y_test, show_graphic=showgraphics, show_matrix=showgraphics)
acc_last_mobile=mobile.get_result()
acc_avg_mo[i]=acc_last_mobile
#DenseNet
denseNet = dn.DenseNet(epochs, parameters.get_batch_dense(dataset_id), dataset_id,tl=transferl)
model = denseNet.build_model()
X_train, X_test, Y_train, Y_test = denseNet.split(parameters.get_split_value(dataset_id))
history = denseNet.load(model, X_train, Y_train, X_test, Y_test)
denseNet.graphics(model, X_test, Y_test, show_graphic=showgraphics, show_matrix=showgraphics)
acc_last_dense=denseNet.get_result()
acc_avg_de[i] = acc_last_dense
#EfficientNet
efficientNet = en.EfficientNet(epochs, parameters.get_batch_eff(dataset_id), dataset_id,tl=transferl)
model = efficientNet.build_model()
X_train, X_test, Y_train, Y_test = efficientNet.split(parameters.get_split_value(dataset_id))
history = efficientNet.load(model, X_train, Y_train, X_test, Y_test)
efficientNet.graphics(model, X_test, Y_test, show_graphic=showgraphics, show_matrix=showgraphics)
acc_last_eff = efficientNet.get_result()
acc_avg_eff[i] = acc_last_eff
"""
# GanDiscriminator
gdm = gd.ganDiscriminator(50, parameters.get_batch_mobile(dataset_id), dataset_id, tl=transferl, neutralGan=False)
gdmodel = gdm.build_model()
X_train, X_test, Y_train, Y_test = gdm.split(parameters.get_split_value(dataset_id))
history = gdm.load(gdmodel, X_train, Y_train, X_test, Y_test)
gdm.graphics(gdmodel, X_test, Y_test, show_graphic=showgraphics, show_matrix=showgraphics)
acc_last_gd = gdm.get_result()
acc_avg_gd[i] = acc_last_gd